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The paper is devoted to an axisymmetric bending problem of a generalized
circular sandwich plate with continuous variation of mechanical properties in the
thickness direction of the core. The plate is clamped and carries a concentrated force
in its center. The improved shear deformation theory of the normal straight line
to the neutral surface is elaborated. The deformation of this normal straight line
is graphically presented for the exemplary sandwich structures of the plate. Two
differential equation of equilibrium of the plate are obtained based on the principle of
stationary potential energy. This system of equations is analytically solved and the
maximum deflection of the example plates are derived. Moreover, the deformation
of the normal strain line and the maximum deflection of the plate are calculated
numerically (FEM). Results of these calculations are compared.
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1. Introduction

The theory of sandwich structures, initiated in the mid of 20th cen-
tury, nowadays is being perfected. Carrera [1] presents a thorough review of
the literature involving the use of multilayered plates and shells in modeling us-
ing the Reissner Mixed Variational Theorem. Ventsel and Krauthammer [2]
emphasize novel analytical and numerical methods for solving linear and non-
linear plate and shell dilemmas and new theories for the design and analysis of
thin plate-shell structures. Vinson [3] provides a general introduction to the
structural mechanics involved in the field of sandwich structures and a sufficient
number of references. Auricchio and Sacco [4] propose a mixed variational
formulations for the first-order shear deformation laminate theory that does not
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require the use of shear correction factors. Carrera [5] gives a historical review
of the theories that have been developed for the analysis of multilayered struc-
tures. Reddy [6] provides full coverage of the theories, analytical solutions, and
modeling of laminated composite plate and shell structures. Yang and Qiao [7]
develop a higher-order impact model to simulate the response of a soft-core
sandwich beam subjected to a foreign object impact. This model provides accu-
rate predictions of the generated stresses and impact process and can be used
effectively in design analysis of anti-impact structures made of sandwich mate-
rials. Zenkour [8] uses the generalized shear deformation theory to study the
static response of a simply supported functionally graded rectangular plate sub-
jected to a transverse uniform load. The influences played by transversal shear
deformation, plate aspect ratio, side-to-thickness ratio, and volume fraction dis-
tributions are considered. Carrera and Brischetto [9] assess a large variety
of plate theories to evaluate the bending and vibration of sandwich structures.
The accuracy of the plate theories is established with respect to the length-
to-thickness-ratio geometrical parameters and to the face-to-core-stiffness-ratio
mechanical parameters.

Jasion et al. [10] study a global and local buckling–wrinkling of the face
sheets of sandwich beams and sandwich circular plates. A shear effect is included
in a developed mathematical model of displacements. Magnucki et al. [11]
present the mathematical model of a sandwich circular plate under pure bend-
ing. The results obtained by the analytical approach are compared with the ones
given by the experimental tests and the finite element method. Senjanović
et al. [12] use the modified Mindlin theory with decomposed flexural and in-plane
shear vibrations for vibration analysis of circular plates. Thai et al. [13] present
a new inverse tangent shear deformation theory for the static, free vibration and
buckling analysis of laminated composite and sandwich plates. The proposed for-
mulation requires C1-continuity. Sarangan and Singh [14] develop a new shear
deformation theories to analyze the static, buckling and free vibration responses
of laminated composite and sandwich plates using the Navier closed form solution
technique. Abrate and Di Sciuva [15] present an overview of the field of equiv-
alent single layer theories for beams, plates and shells. Meksi et al. [16] introduce
a new shear deformation plate theory to illustrate the bending, buckling and free
vibration responses of functionally graded material sandwich plates. A new dis-
placement field containing integrals is proposed. The Navier solution technique is
adopted to derive analytical solutions for simply supported rectangular sandwich
plates. Naderi Beni and Botshekanan Dehkordi [17] extend the Carrera
Unified Formulation in the polar coordinates for analyzing the sandwich circular
plate with the functionally graded material core. The results are provided for
different geometries, thickness ratios, boundary conditions as well as deflection,
radial displacements, annular and radial stresses, and transverse stresses along
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the thickness. Zarga et al. [18] employ a simple quasi-3D shear deformation
theory for thermo-mechanical bending analysis of functionally graded material
sandwich plates. The effects of gradient index, geometrical parameters and ther-
mal load on thermo-mechanical bending response of the FG sandwich plates are
examined. Boussoula et al. [19] perform a thermomechanical flexural analysis
of functionally graded material sandwich plates with P-FGM face sheets and
E-FGM and symmetric S-FGM core by employing the nth-order shear deforma-
tion theory. A novel type of S-FGM sandwich plates, namely, both P-FGM face
sheets and a symmetric S-FGM hard core are considered. The effects of volume
fraction variation, geometrical parameters and thermal load on thermomechan-
ical flexural behavior of the symmetric FGM sandwich plates are investigated.

Magnucki et al. [20] conduct the study of a simply supported beams with
bisymmetrical cross-sections under a generalized load. Based on the Zhuravsky
shear stress formula, the shear deformation theory of a planar beam cross-section
is formulated. Magnucki et al. [21] study a simply supported beams under
three-point bending with symmetrically varying mechanical properties in the
depth direction. The individual shear deformation theory for beams of such fea-
tures is proposed. Magnucki et al. [22] study analytically and numerically an ax-
isymmetric bending problem of the circular plate with symmetrically thickness-
wise varying mechanical properties. A nonlinear function of deformation of the
straight line normal to the plate neutral surface is assumed. The shear effect
is also considered. Karimi and Fallah [23] investigate a nonlinear behavior of
functionally graded (FG) sandwich circular sector plates with simply supported
radial edges under transverse loading using the first-order shear deformation
theory with von Karman geometric nonlinearity. The effects of non-linearity,
material constant, lay-up, and boundary conditions on bending of FG sandwich
sector plates with FG core/homogenous face sheets and metallic core/FG face
sheets are studied. Magnucka-Blandzi et al. [24] analyze a simply supported
circular plate with symmetrically varying mechanical properties in the thickness
direction. The main goal of the study is to develop a mathematical descrip-
tion of both the single-layer and three-layer structure using one formula for the
axisymmetric bending and buckling problems with consideration of the shear ef-
fect. Two dimensionless functions closely related to the variability of mechanical
properties were introduced and the nonlinear hypothesis of deformation of the
straight line normal to the plate neutral surface is assumed. Magnucki and
Magnucka-Blandzi [25] perform a study of generalization of the analytical
model of sandwich structures. The continuous variation of mechanical proper-
ties in the thickness direction of the structure wall is proposed. The individual
nonlinear theory of deformation of the straight line normal to the neutral sur-
face is developed. Sadiq and Salau [26] carry out the analysis of the deflection
response of a structural circular sandwich plate, simply supported or clamped
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at its boundary, under different loading configurations (uniformly distributed,
concentrated, and linearly varying load). Magnucki [27] presents the analyti-
cal formulation of the shear deformation theory of homogeneous, sandwich and
symmetrically varying mechanical properties beams.

The aim of this paper is the generalization of the classical circular sandwich
plate by the application of the improved shear deformation theory that describes
accurately the bending behavior of the sandwich plate.

2. Analytical model of the circular sandwich plate

The subject of the studies is a clamped generalized circular sandwich plate of
the radius R1 and the total thickness h with a rigid central part of the radius R0.
The plate is subjected to the concentrated force F (Fig. 1).

Taking into account the paper [25], the variation of Young’s modulus of the
core is assumed to be continuous in its thickness direction (Fig. 2).

Fig. 1. Scheme of the circular sandwich plate with the load.

Fig. 2. Scheme of Young’s modulus variability in the thickness direction of the core.
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The value of Young’s modulus Ef of the faces is constant, while in the core
is variable

(2.1) Ec(ζ) = Effe(ζ),

where the dimensionless function of elasticity modulus

(2.2) fe(ζ) = e0 + (1− e0)

(
2

χc
ζ

)ke
and e0 = E0/Ef – dimensionless coefficient, χc = hc/h – dimensionless thickness
of the core, ζ = z/h – dimensionless coordinate, ke – exponent – positive even
number.

The faces of the plate are thin-walled and the shear effect in them is neglected.
The deformation of the straight line normal to the neutral surface of the plate
is shown in Fig. 3.

Fig. 3. The scheme of the deformation of the straight normal line.

The longitudinal displacements in accordance with Fig. 3 are as follows:
• the upper face (−1/2 ≤ ζ ≤ −χc/2)

(2.3) u(r, ζ) = −h
[
ζ
dw

dr
+ ψ(r)

]
,
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where: w(r) – defection, ψ(r) = uf/h – dimensionless displacement function of
the faces;
• the core (−χc/2 ≤ ζ ≤ χc/2)

(2.4) u(r, ζ) = −h
[
ζ
dw

dr
− fd(ζ)ψ(r)

]
,

where fd(ζ) – dimensionless function of deformation of the straight line of the
core;
• the lower face (χc/2 ≤ ζ ≤ 1/2)

(2.5) u(r, ζ) = −h
[
ζ
dw

dr
− ψ(r)

]
.

Therefore, the strains:
• the upper face (−1/2 ≤ ζ ≤ −χc/2)

ε(uf)
r (r, ζ) =

∂u

∂r
= −h

[
ζ
d2w

dr2
+
dψ

dr

]
,(2.6)

ε(uf)
ϕ (r, ζ) =

u(r, ζ)

r
= −h

[
ζ
dw

rdr
+
ψ(r)

r

]
,(2.7)

γ(uf)
rz (r, ζ) =

dw

dr
+
∂u

∂z
= 0;(2.8)

• the core (−χc/2 ≤ ζ ≤ χc/2)

ε(c)
r (r, ζ) =

∂u

∂r
= −h

[
ζ
d2w

dr2
− fd(ζ)

dψ

dr

]
,(2.9)

ε(c)
ϕ (r, ζ) =

u(r, ζ)

r
= −h

[
ζ
dw

rdr
− fd(ζ)

ψ(r)

r

]
,(2.10)

γ(c)
rz (r, ζ) =

dw

dr
+
∂u

∂z
=
dfd
dζ
ψ(r);(2.11)

• the lower face (χc/2 ≤ ζ ≤ 1/2)

ε(lf)
r (r, ζ) =

∂u

∂r
= −h

[
ζ
d2w

dr2
− dψ

dr

]
,(2.12)

ε(lf)
ϕ (r, ζ) =

u(r, ζ)

r
= −h

[
ζ
dw

rdr
− ψ(r)

r

]
,(2.13)

γ(lf)
rz (r, ζ) =

dw

dr
+
∂u

∂z
= 0.(2.14)
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Consequently, the stresses:
• the upper face (−1/2 ≤ ζ ≤ −χc/2)

σ(uf)
r (r, ζ) =

Ef
1− ν2

[
ε(uf)
r (r, ζ) + νε(uf)

ϕ (r, ζ)
]
,(2.15)

σ(uf)
ϕ (r, ζ) =

Ef
1− ν2

[
ε(uf)
ϕ (r, ζ) + νε(uf)

r (r, ζ)

]
,(2.16)

τ (uf)
rz (r, ζ) = 0;(2.17)

• the core (−χc/2 ≤ ζ ≤ χc/2)

σ(c)
r (r, ζ) =

Ef
1− ν2

[
ε(c)
r (r, ζ) + νε(c)

ϕ (r, ζ)
]
fe(ζ),(2.18)

σ(c)
ϕ (r, ζ) =

Ef
1− ν2

[
ε(c)
ϕ (r, ζ) + νε(c)

r (r, ζ)
]
fe(ζ),(2.19)

τ (c)
rz (r, ζ) =

Ef
2(1 + ν)

γ(c)
rz (r, ζ)fe(ζ);(2.20)

• the lower face (χc/2 ≤ ζ ≤ 1/2)

σ(lf)
r (r, ζ) =

Ef
1− ν2

[
ε(lf)
r (r, ζ) + νε(lf)

ϕ (r, ζ)
]
,(2.21)

σ(lf)
ϕ (r, ζ) =

Ef
1− ν2

[
ε(lf)
ϕ (r, ζ) + νε(lf)

r (r, ζ)
]
,(2.22)

τ (lf)
rz (r, ζ) = 0.(2.23)

Taking into account the procedure of formulation of the deformation function
applied in the paper [20, 27], the dimensionless function of deformation of the
straight line of the core is elaborated in the following form:

(2.24) fd(ζ) =
1

C0

∫
1− χ2

c + (χ2
c − 4ζ2)e0 + 8(1− e0)Jc(ζ)

fe(ζ)
dζ,

where:

C0 =

χc/2∫
0

1− χ2
c + (χ2

c − 4ζ2)e0 + 8(1− e0)Jc(ζ)

fe(ζ)
dζ dimensionless coefficient,

Jc(ζ) =
χ2
c

4(ke + 2)

[
1−

(
2

χc
ζ

)ke+2]
dimensionless function.

The elastic strain energy of the plate

(2.25) Uε = πh

R1∫
R0

{
Φ(uf)
ε (r) + Φ(c)

ε (r) + Φ(lf)
ε (r)

}
r dr,
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where:

Φ(uf)
ε (r) =

−χc/2∫
−1/2

[
σ(uf)
r (r, ζ)ε(uf)

r (r, ζ) + σ(uf)
ϕ (r, ζ)ε(uf)

ϕ (r, ζ)
]
dζ,

Φ(c)
ε (r) =

χc/2∫
−χc/2

[
σ(c)
r (r, ζ)ε(c)

r (r, ζ) + σ(c)
ϕ (r, ζ)ε(c)

ϕ (r, ζ) + τ (c)
rz (r, ζ)γ(c)

rz (r, ζ)
]
dζ,

Φ(lf)
ε (r) =

1/2∫
χc/2

[
σ(lf)
r (r, ζ)ε(lf)

r (r, ζ) + σ(lf)
ϕ (r, ζ)ε(lf)

ϕ (r, ζ)
]
dζ.

The expression (2.25) after integration in the thickness direction of the plate and
after a simply transformation is as follows:

(2.26) Uε = π
Efh

3

1− ν2

×
R1∫
R0

{
Cwwfww(r)− 2Cwψfwψ(r) + Cψψfψψ(r) +

1

2
(1− ν)

J3

h2
ψ2(r)

}
r dr,

where

fww(r) =

(
d2w

dr2

)2

+ 2ν
d2w

dr2

dw

r dr
+

(
dw

r dr

)2

,

fψψ(r) =

(
dψ

dr

)2

+ 2ν
dψ

dr

ψ(r)

r
+

(
ψ(r)

r

)2

,

fwψ(r) =
d2w

dr2

dψ

dr
+ ν

(
d2w

dr2

ψ(r)

r
+
dw

r dr

dψ

dr

)
+
dw

r dr

ψ(r)

r
,

Cww =
1

12

[
1− (1− e0)

ke
ke + 3

χ3
c

]
,

Cwψ =
1

4
(1− χ2

c) + J1, Cψψ = 1− χc + J2,

J1 =

χc/2∫
−χc/2

fd(ζ)fe(ζ)ζ dζ, J2 =

χc/2∫
−χc/2

f2
d (ζ)fe(ζ) dζ,

J3 =
1

C2
0

χc/2∫
−χc/2

[1− χ2
c + (χ2

c − 4ζ2)e0 + 8(1− e0)Jc(ζ)]2

fe(ζ)
dζ.
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Fig. 4. Scheme of the shear force in the circular plate.

The work of the load formulated according to Fig. 4 is as follows:

(2.27) W = −2π

R1∫
R0

rQ(r)
dw

dr
dr

and the first variation of the work

(2.28) δW = 2π

R1∫
R0

d

dr
[rQ(r)]δw dr,

where Q(r) = 1
r
F
2π – the shear force.

Consequently, based on the principle of stationary total potential energy
δ(Uε −W ) = 0, the system of two differential equations of equilibrium of this
circular plate is obtained in the following form:

d

dr

{
1

r

d

dr

[
r

(
Cww

dw

dr
− Cwψψ(r)

)]}
=

1− ν2

2π

1

r

F

Efh3
,(2.29)

d

dr

{
1

r

d

dr

[
r

(
Cwψ

dw

dr
− Cψψψ(r)

)]}
+

1− ν
2

J3

h2
ψ(r) = 0.(2.30)

3. Analytical study – bending of the circular sandwich plate

Integrating Eq. (2.29) one obtains

(3.1) Cww
dw

dr
− Cwψψ(r) =

1− ν2

4π

(
2

r
C2 + rC1 −

1

2
r + r ln

r

R1

)
F

Efh3
,

where C1 and C2 are integration constants.
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The boundary conditions are as follows:
• for r = R0, dw

dr

∣∣
R0

= 0 and ψ(R0) = 0, from which 2C2 + R2
0C1 =

1
2R

2
0 −R2

0 ln R0
R1

,
• for r = R1, dw

dr

∣∣
R1

= 0 and ψ(R1) = 0, from which 2C2 +R2
1C1 = 1

2R
2
1,

therefore C1 = 1
2 +

R2
0

R2
1−R2

0
ln R0

R1
, and C2 = − R2

0R
2
1

2(R2
1−R2

0)
ln R0

R1
.

Equation (3.1) with consideration of the above expressions for the integration
constants is in the following form:

(3.2) Cww
dw

R1dξ
= Cwψψ(ξ) +

1− ν2

4π

[
ξ ln ξ −

(
1

ξ
− ξ
)
CR

]
FR1

Efh3
,

where ξ = r
R1

– dimensionless coordinate, CR =
ξ20

1−ξ20
ln ξ0 – coefficient, ξ0 = R0

R1
.

Equations (2.28) and (3.2) are approximately solved with the use of the
assumed following functions:

ψ(ξ) =

[
ξ ln ξ −

(
1

ξ
− ξ
)
CR

]
ψ0,(3.3)

w(ξ) =
1

4

[
(1− 2CR)(1− ξ2) + 2(ξ2 − 2CR) ln ξ

]
w0,(3.4)

where ψ0, w0 – coefficients.
The function (3.4) satisfies also the boundary condition w(1) = 0.
Equation (2.30) with consideration of the functions (3.3) and (3.4) is as fol-

lows:

(3.5)
2

ξ

(
Cwψ

w0

R1
− Cψψψ0

)
+

1− ν
2

J3

(
R1

h

)2[
ξ ln ξ −

(
1

ξ
− ξ
)
CR

]
ψ0 = 0.

An application of the Galerkin method to this equation gives the following:

(3.6)
1∫

ξ0

<(ξ)

[
ξ ln ξ −

(
1

ξ
− ξ
)
CR

]
ξ dξ = 0,

where <(ξ) – the left part of Eq. (3.5).
After integration and after simply transformation, one obtains

(3.7) ψ0 =
Cwψ

Cψψ − 1−ν
4 J3

(
R1
h

)2 JG2
JG1

w0

R1
,

where

JG1 =

1∫
ξ0

[
ξ ln ξ −

(
1

ξ
− ξ
)
CR

]
dξ, JG2 =

1∫
ξ0

[
ξ ln ξ −

(
1

ξ
− ξ
)
CR

]2

ξ dξ.
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Substituting the functions (3.3) and (3.4) into Eq. (3.2), after simply trans-
formation with consideration the expression (3.7), one obtains:

(3.8) w0 =
1− ν2

4π

1

Cww − Cs
FR2

1

Efh3
,

where

Cs =
C2
wψ

Cψψ − 1−ν
4 J3

(
R1
h

)2 JG2
JG1

.

Thus, taking into account the function (3.4), the maximum deflection of the
plate is in the following form:

(3.9) wmax = w(ξ0) = w̄max
F

Efh
,

Table 1. The results of the analytical study of the exemplary cases of the
circular plates.

ke 4 20 100
Cww 0.0555515 0.0410566 0.0361312
Cs 0.00266677 0.00211769 0.00177185
w̄max 190.40 270.82 306.91

fe(ζ)

fd(ζ)
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where the dimensionless maximum deflection

(3.10) w̄max = w(ξ0) =
1− ν2

16π

(1− 2CR)(1− ξ2
0) + 2(ξ2

0 − 2CR) ln ξ0

Cww − Cs

(
R1

h

)2

.

The detailed calculations are carried out for the exemplary cases of the circular
sandwich plates. The data of the three example plates are as follows: radiuses
R0 = 10mm, R1 = 500mm, thicknesses h = 20mm, hc = 17mm, hf = 1.5mm,
material constants Ef = 72000MPa, Ec = 3600MPa, νf = νc = ν = 0.3. The
results of the calculations are specified in Table 1.

4. Numerical FEM study – bending of the circular sandwich plate

Numerical computations of the exemplary cases of the circular sandwich
plates are carried out with the ABAQUS finite-element code. The FE model
is developed using the shell element S4R for a face sheet, and the solid elements
C3D8 for a core. The shell elements are placed at the mid-surface of the face
sheet. The interaction between the core and the face sheets is provided with the
use of the node-to-node tie constraint. The plate is located in a cylindrical coor-
dinate system (r, ϕ, z) with the downward directed z axis. The reference point is
set in the origin of the cylindrical coordinate system and is connected with face
edges and a core surface of the inner side of the plate with the use of a coupling
constraint (Fig. 5).

Fig. 5. The finite element model.

The reference point is allowed to move freely only in the z-direction. The
remaining DOFs at this point are fixed. The plate is clamped around the outer
face edges and the outer core surface. Due to symmetry of the plate and the
load only a quarter of plate is considered. The symmetry boundary conditions
are used for the region at the symmetry planes. The load is applied in the z-
direction at a reference point. The vertical displacement is measured at the inner
edge. The core is divided into 51 subsections in order to obtain a good agreement
between approximated (discretized) and real Young’s modulus. The value of the
Young modulus is set in the middle of every subsection. A mesh sensitivity study
was conducted with respect to the number of elements to ensure that the mesh
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was fine enough to give reliable results. The element size used is 4mm for both
a face sheet and a core. The results from the numerical (FEM) analysis were
used to validate the analytical model. The comparison between obtained results
is collected in Table 2.

Table 2. The comparison between the analytical (AN) and the numerical (FEM)
studies of the exemplary cases of the circular plates.

ke 4 20 100

w̄
(AN)
max 199.40 270.82 306.91

w̄
(FEM)
max 205.35 280.48 318.61∣∣∣∣ w̄(FEM)

max − w̄
(AN)
max

w̄
(FEM)
max

∣∣∣∣ 2.9% 3.4% 3.7%

The assumed analytical model of the circular plate describes the whole family
of plates with or without the rigid part in the center from the homogeneous ones
to the classical sandwich ones. The particular case of the considered cases in
Table 1 is the classical sandwich plate obtained for constant Young’s modulus
in the core when ke → ∞. For this case the shear coefficient Cs = 0.00167 and
w̄max = 319.08.

Another interesting case is the homogeneous plate without a rigid part in the
center. If the shear effect is not included (Cs = 0) then the following dimension-
less maximum deflection is obtained

w̄max =
1− ν2

16π

1

Cww

(
R1

h

)2

,

where Cww = 1
12 This formula is consistent with the well-known one in [2].

5. Conclusions

The presented studies of the circular sandwich plates allow to formulate the
following conclusions:
• The proposed dimensionless function of deformation of the straight line

of the core (2.24) describes well the bending behavior of the analyzed
structures.
• Young’s modulus variability enables to consider the plates from the homo-

geneous to the sandwich ones. For the very high value of the ke parameter
the plate can be treated as the classical sandwich plate because the Young
modulus is almost constant along the core depth. Hence the limit value
of deflection of the considered plates is obtained by the classical sandwich
plate (Fig. 6).
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Fig. 6. Dimensionless maximum deflection of the exemplary plates.

• A good agreement between the analytical and the numerical (FEM) results
is observed. The maximal percentage difference is less than 3.7%.
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