PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Machinability Indicators in Milling of Thin-Walled Composite Structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Composite materials are alternative materials to aluminum and titanium alloys. The wide-spread use of this materials makes it necessary to gain insight into the phenomena occurring in machining processes for thin-walled structures. This paper shows the investigation of the machinability of thin-walled composite materials. The study involved milling glass and carbon reinforced plastics using tools dedicated to the processing of this type of material. Their machinability was determined based on the measured feed force, deformation and surface roughness. In addition, surface analysis was performed by SEM. The results showed that the feed had the greatest impact on the feed force, deformation and surface roughness, followed by cutting speed. Lower values of the measured machinability indicators such as the maximum feed force and roughness were obtained for composites with glass fibers. Lower deformations were induced in the machining of composites with carbon fibers. The study also involved conducting a recurrence analysis in order to select the most appropriate quantifications depending on the technological parameters of milling. It was found that the most appropriate indicators related with the technological parameters for both materials were laminarity and averaged diagonal length.
Twórcy
  • Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology
Bibliografia
  • 1. Teti R. (2002) Machining of Composite Materials. CIRP Annals 51: 611–634.
  • 2. Matuszak J. (2022) Comparative Analysis of the Effect of Machining with Wire and Ceramic Brushes on Selected Properties of the Surface Layer of EN AW-7075 Aluminium Alloy. Adv Sci Technol Res J; 16: 50–56.
  • 3. Matuszak J. (2021) Influence of machining with ceramic brushes on the surface quality of EN-AW 7075 aluminum alloy after abrasive waterjet process. In: 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, Naples, Italy, pp 344–348
  • 4. Skoczylas A. (2021) Influence of Centrifugal Shot Peening Parameters on the Impact Force and Surface Roughness of EN-AW 2024 Aluminum Alloy Elements. Adv Sci Technol Res J; 15: 71–78.
  • 5. Zaleski K., Skoczylas A., Ciecielag K. (2020) The Investigations of the Surface Layer Properties of C45 Steel After Plasma Cutting and Centrifugal Shot Peening. In: Królczyk GM, Niesłony P, Królczyk J (eds) Industrial Measurements in Machining. Springer International Publishing, Cham, pp 172–185.
  • 6. Kłonica M., Chatys R., Blumbergs I. (2022) Strength Analysis of Lap Joints in Aerospace Structural Materials. Adv Sci Technol Res J; 16: 147–155.
  • 7. Kosicka E., Krzyzak A., Dorobek M., Borowiec M. (2022) Prediction of Selected Mechanical Properties of Polymer Composites with Alumina Modifiers. Materials; 15: 882.
  • 8. Wei Y., An Q., Cai X., Chen M., Ming W. (2015) Influence of Fiber Orientation on Single-Point Cutting Fracture Behavior of Carbon-Fiber/Epoxy Prepreg Sheets. Materials; 8: 6738–6751.
  • 9. Ciecieląg K., Zaleski K., Kęcik K. (2022) Effect of Milling Parameters on the Formation of Surface Defects in Polymer Composites. Mater Sci; 57: 882–893.
  • 10. Doluk E., Rudawska A. (2022) Effect of Machining Settings and Tool Geometry on Surface Quality After Machining of Al/CFRP Sandwich Structures. Adv Sci Technol Res J; 16: 22–33.
  • 11. Kłonica M. (2022) Application of the Ozonation Process for Shaping the Energy Properties of the Surface Layer of Polymer Construction Materials. J Ecol Eng; 23: 212–219.
  • 12. Gdula M., Burek J. (2017) Cutting layer and cutting forces in a 5-axis milling of sculptured surfaces using the toroidal cutter. Journal of Machine Engineering; 4: 98–122.
  • 13. Twardowski P., Wieczorowski M. (2023) Monitoring of Cutting Process and Tool Condition of Metal and Metal Composite. Materials; 16: 3660.
  • 14. Doluk .E, Rudawska A., Miturska-Barańska I. (2022) Investigation of the Surface Roughness and Surface Uniformity of a Hybrid Sandwich Structure after Machining. Materials; 15: 7299.
  • 15. Ciecieląg K., Kęcik K., Skoczylas A., Matuszak J., Korzec I., Zaleski R. (2022) Non-Destructive Detection of Real Defects in Polymer Composites by Ultrasonic Testing and Recurrence Analysis. Materials; 15: 7335.
  • 16. Ghidossi P., El Mansori M., Pierron F. (2004) Edge machining effects on the failure of polymer matrix composite coupons. Composites Part A: Applied Science and Manufacturing; 35: 989–999.
  • 17. Hosokawa A., Hirose N., Ueda T., Furumoto T. (2014) High-quality machining of CFRP with high helix end mill. CIRP Annals; 63: 89–92.
  • 18. Karpat Y., Polat N. (2013) Mechanistic force modeling for milling of carbon fiber reinforced polymers with double helix tools. CIRP Annals; 62: 95–98.
  • 19. Yuanyushkin A.S., Rychkov D.A., Lobanov D.V. (2014) Surface Quality of the Fiberglass Composite Material after Milling. AMM; 682: 183–187.
  • 20. Ciecieląg K. (2023) Machinability Measurements in Milling and Recurrence Analysis of Thin-Walled Elements Made of Polymer Composites. Materials; 16:4825.
  • 21. Teicher U., Rosenbaum T., Nestler A., Brosius A. (2017) Characterization of the Surface Roughness of Milled Carbon Fiber Reinforced Plastic Structures. Procedia CIRP; 66: 199–203.
  • 22. Azmi A.I., Lin R.J.T., Bhattacharyya D. (2013) Machinability study of glass fibre-reinforced polymer composites during end milling. Int J Adv Manuf Technol; 64: 247–261.
  • 23. Hintze W., Hartmann D. (2013) Modeling of Delamination During Milling of Unidirectional CFRP. Procedia CIRP; 8: 444–449.
  • 24. Razfar M.R,. Zadeh M.R.Z. (2009) Optimum damage and surface roughness prediction in end milling glass fibre-reinforced plastics, using neural network and genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture; 223: 653–664.
  • 25. Azmi A.I., Lin R.J.T., Bhattacharyya D. (2012) Experimental Study of Machinability of GFRP Composites by End Milling. Materials and Manufacturing Processes; 27: 1045–1050.
  • 26. Davim J.P., Reis P. (2005) Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. Journal of Materials Processing Technology; 160: 160–167.
  • 27. Kiliçkap E., Yardimeden A., Çelik Y.H. (2015) Investigation of experimental study of end milling of CFRP composite. Science and Engineering of Composite Materials; 22: 89–95.
  • 28. Rusinek R. (2010) Cutting process of composite materials: An experimental study. International Journal of Non-Linear Mechanics; 45: 458–462.
  • 29. Bayraktar S., Turgut Y. (2016) Investigation of the cutting forces and surface roughness in milling carbon-fiber-reinforced polymer composite material. Mater Tehnol; 50: 591–600.
  • 30. Jenarthanan M.P., Jeyapaul R. (2018) Optimisation of machining parameters on milling of GFRP composites by desirability function analysis using Taguchi method. Int J Eng Sci Tech; 5: 22–36.
  • 31. Lu S., Ding H., Rong K., Rong S., Tang J., Xing B. (2022) Composite mechanical deformation based semi-analytical prediction model for dynamic loaded contact pressure of thin-walled aerospace spiral bevel gears. Thin-Walled Structures; 171: 108794.
  • 32. Rai J.K., Xirouchakis P. (2008) Finite element method based machining simulation environment for analyzing part errors induced during milling of thin-walled components. International Journal of Machine Tools and Manufacture; 48: 629–643.
  • 33. Rozylo P., Falkowicz K. (2021) Stability and failure analysis of compressed thin-walled composite structures with central cut-out, using three advanced independent damage models. Composite Structures; 273: 114298.
  • 34. Rozylo P., Debski H., Wysmulski P., Falkowicz K. (2018) Numerical and experimental failure analysis of thin-walled composite columns with a top-hat cross section under axial compression. Composite Structures; 204: 207–216.
  • 35. Ciecieląg K., Zaleski K. (2022) Milling of Three Types of Thin-Walled Elements Made of Polymer Composite and Titanium and Aluminum Alloys Used in the Aviation Industry. Materials; 15: 5949.
  • 36. Ramanaiah B.V., Manikanta B., Ravi Sankar M., Malhotra M., K.Gajrani K (2018) Experimental Study of Deflection and Surface Roughness in Thin Wall Machining of Aluminum Alloy. Materials Today: Proceedings. 5: 3745–3754.
  • 37. Borojevic S., Lukic D., Milosevic M., Vukman J., Kramar D. (2018) Optimization of process parameters for machining of Al 7075 thin-walled structures. Adv produc engineer manag; 13: 125–135.
  • 38. Bałon P., Rejman E., Świątoniowski A., Kiełbasa B., Smusz R,. Szostak J., Cieślik J., Kowalski Ł. (2020) Thin-walled Integral Constructions in Aircraft Industry. Procedia Manufacturing; 47: 498–504.
  • 39. Singh A., Agrawal A. (2015) Investigation of surface residual stress distribution in deformation machining process for aluminum alloy. Journal of Materials Processing Technology; 225: 195–202.
  • 40. Kecik K., Ciecielag K., Zaleski K. (2020) Damage detection by recurrence and entropy methods on the basis of time series measured during composite milling. Int J Adv Manuf Technol; 111: 549–563.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a725236-cdc7-4487-9f36-d60c0d84be62
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.