PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the fully discrete approximations of the MGT two-temperatures thermoelastic problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a one-dimensional two-temperatures thermoelastic model. The corresponding variational problem leads to a coupled system which is written in terms of the mechanical velocity, the temperature speed and the inductive temperature. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. A priori error estimates are proved and the linear convergence of the approximations is deduced under suitable additional regularity conditions. Finally, some numerical simulations are shown to demonstrate the accuracy of the proposed algorithm and the behavior of the discrete energy.
Rocznik
Strony
391--407
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • CINTECX, Departamento de Ingeniería Mecánica, Universidade de Vigo, Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain
  • Departamento de Matemática Aplicada I, Universidade de Vigo, ETSI Telecomunicación. Campus As Lagoas Marcosende s/n, 36310 Vigo, Spain
  • Departamento de Matemáticas, E.S.E.I.A.A.T.-U.P.C., Colom 11, Terrassa, 08222, Spain
Bibliografia
  • 1. J.A. Conejero, C. Lizama, F. Ródenas, Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation, Applied Mathematics and Information Sciences, 9, 2233–2238, 2015.
  • 2. F. Dell’Oro, I. Lasiecka, V. Pata, The Moore–Gibson–Thompson equation with memory in the critical case, Journal of Differential Equations, 261, 4188–4222, 2016.
  • 3. F. Dell’Oro, V. Pata, On the Moore–Gibson–Thompson equation and its relation to linear viscoelasticity, Applied Mathematics and Optimization Journal, 76, 641–655, 2017.
  • 4. B. Kaltenbacher, I. Lasiecka, R. Marchand, Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Control and Cybernetics, 40, 971–988, 2011.
  • 5. I. Lasiecka, X. Wang, Moore–Gibson–Thompson equation with memory, part II: general decay of energy, Journal of Differential Equations, 259, 7610–7635, 2015.
  • 6. M. Pellicer, B. Said-Houari, Wellposedness and decay rates for the cauchy problem of the Moore–Gibson–Thompson equation arising in high intensity ultrasound, Applied Mathematics and Optimization, 80, 447–478, 2019.
  • 7. M. Pellicer, J. Sola-Morales, Optimal scalar products in the Moore–Gibson–Thompson equation, Evolution Equations and Control Theory, 8, 203–220, 2019.
  • 8. R. Quintanilla, Moore–Gibson–Thompson thermoelasticity, Mathematics and Mechanics of Solids, 24, 4020–4031, 2019.
  • 9. A.E. Abouelregal, Fractional derivative Moore–Gibson–Thompson heat equation without singular kernel for a thermoelastic medium with a cylindrical hole and variable properties, Journal of Applied Mathematics and Mechanics, 102, e202000327, 2022.
  • 10. A.E. Abouelregal, H. Ahmad, T.A. Nofal, H. Abu-Zinadah, Moore–Gibson–Thompson thermoelasticity model with temperature-dependent properties for thermoviscoelastic orthotropic solid cylinder of infinite length under a temperature pulse, Physica Scripta, 96, 105201, 2021.
  • 11. J. Baldonedo, J.R. Fernández, R. Quintanilla, On the time decay for the MGT-type porosity problems, Discrete and Continuous Dynamical Systems, S 15, 1941–1955, 2022.
  • 12. N. Bazarra, J.R. Fernández, R. Quintanilla, Analysis of a Moore–Gibson–Thompson thermoelasticity problem, Journal of Computational and Applied Mathematics, 382, 113058, 2021.
  • 13. N. Bazarra, J.R. Fernández, R. Quintanilla, On the decay of the energy for radial solutions in Moore–Gibson–Thompson thermoelasticity, Mathematics and Mechanics of Solids, 26, 1507–1514, 2021.
  • 14. N. Bazarra, J.R. Fernández, R. Quintanilla, Numerical analysis of a thermoelastic dielectric problem arising in the Moore–Gibson–Thompson theory, Journal of Computational and Applied Mathematics, 414, 114454, 2022.
  • 15. M. Conti, V. Pata, M. Pellicer, R. Quintanilla, On the analyticity of the MGT-viscoelastic plate with heat conduction, Journal of Differential Equations, 269, 7862–7880, 2020.
  • 16. M. Conti, V. Pata, M. Pellicer, R. Quintanilla, A new approach to MGT-thermo-viscoelasticity, Discrete and Continuous Dynamical Systems, 41, 4645–4666, 2021.
  • 17. M. Conti, V. Pata, R. Quintanilla, Thermoelasticity of Moore–Gibson–Thompson type with history dependence in temperature, Asymptotic Analysis, 120, 1–21, 2020.
  • 18. J.R. Fernández, R. Quintanilla, Moore–Gibson–Thompson theory for thermoelastic dielectrics, Applied Mathematics and Mechanics, 42, 309–316, 2021.
  • 19. K. Jangid, S. Mukhopadhyay, A domain of influence theorem under MGT thermoelasticity theory, Mathematics and Mechanics of Solids, 26, 285–295, 2020.
  • 20. A. Mesloub, A. Zaraï, F. Mesloub, B. Cherif, M. Abdalla, The Galerkin method for fourth-order equation of the Moore–Gibson–Thompson type with integral condition, Advances in Mathematical Physics, 2021, 5532691, 2021.
  • 21. M. Ostoja-Starzewski, R. Quintanilla, Spatial behaviour of solutions of the Moore–Gibson–Thompson equation, Journal of Mathematical Fluid Mechanics, 23, 105, 2021.
  • 22. M. Pellicer, R. Quintanilla, On uniqueness and instability for some thermomechanical problems involving the Moore–Gibson–Thompson equation, Journal of Applied Mathematics and Physics, 71, 84, 2020.
  • 23. S.K.R. Choudhuri, On a thermoelastic three-phase-lag model, Journal of Thermal Stresses, 30, 231–238, 2007.
  • 24. D.Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME Journal of Heat Transfer, 117, 8–16, 1995.
  • 25. M. Dreher, R. Quintanilla, R. Racke, Ill-posed problems in thermomechanics, Applied Mathematics Letters, 22, 1374–1379, 2009.
  • 26. P.J. Chen, M.E. Gurtin, On a theory of heat involving two temperatures, Journal of Applied Mathematics and Physics, 19, 614–627, 1968.
  • 27. P.J. Chen, M.E. Gurtin, W.O. Williams, A note on non-simple heat conduction, Journal of Applied Mathematics and Physics, 19, 969–970, 1968.
  • 28. P.J. Chen, M.E. Gurtin, W.O. Williams, On the thermodynamics of non-simple materials with two temperatures, Journal of Applied Mathematics and Physics, 20, 107–112, 1969.
  • 29. W.E. Warren, P.J. Chen, Wave propagation in two temperatures theory of thermoelasticity, Acta Mechanica, 16, 83–117, 1973.
  • 30. R. Quintanilla, A well-posed problem for the dual-phase-lag heat conduction, Journal of Thermal Stresses, 31, 260–269, 2008.
  • 31. R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, Journal of Thermal Stresses, 32, 1270–1278, 2008.
  • 32. R. Quintanilla, Moore–Gibson–Thompson thermoelasticity with two temperatures, Applications in Engineering Science, 1, 100006, 2020.
  • 33. P.G. Ciarlet, Basic error estimates for elliptic problems, in: Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions [eds.], vol. II, pp. 17–351, Elsevier, Holland, 1993.
  • 34. M. Campo, J.R. Fernández, K.L. Kuttler, M. Shillor, J.M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Computer Methods in Applied Mechanics and Engineering, 196, 1–3, 476–488, 2006.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a70d4b3-fda5-49d4-9da4-7b5de8f3bbc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.