Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
SWOT analysis as a heuristic technique to determine the application potential of third-generation solar cells
Języki publikacji
Abstrakty
Celem pracy było przeanalizowanie na podstawie analizy SWOT (Strengths, Weaknesses, Opportunities, Threats) ograniczeń obecnie opracowanych rozwiązań dla fotowoltailki organicznej w kierunku komercjalizacji. Szczegółowym rozważaniom poddano ogniwa słoneczne trzeciej generacji w aspekcie istniejących nielicznych zastosowań praktycznych oraz wizję przyszłości. Stwierdzono, iż wciąż wyzwaniem pozostaje przeskalowanie technologii jak i stabilność w warunkach atmosferycznych dlatego tak istotne są badania morfologii powierzchni wytwarzanych warstw w celu minimalizacji kosztów i używanych substancji chemicznych (aspekty ekonomiczne i ekologiczne).
The aim of the work was to analyze, based on a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis, the limitations of currently developed solutions for organic photovoltaics towards commercialization. Third generation solar cells were considered in detail in terms of the few existing practical applications and the vision of the future. It was found that scaling the technology and stability in atmospheric conditions are still a challenge, which is why it is so important to study the surface morphology of the produced layers in order to minimize the costs and chemicals used (economic and ecological aspects).
Wydawca
Czasopismo
Rocznik
Tom
Strony
158--162
Opis fizyczny
Bibliogr. 43 poz., tab.
Twórcy
autor
- Wojskowy Instytut Techniki Inżynieryjnej, Wrocław
autor
- Wojskowy Instytut Techniki Inżynieryjnej, Wrocław
Bibliografia
- [1] Shah N., Shah A.A., Leung P.K., Khan S., Sun K., Zhu X., Liao Q. A review of third generation solar cells, Processes 11 (2023) 1852.
- [2] de Weerd C., Gomez L., Capretti A., Lebrun D., Matsubara E., Lin J., Ashida M., Spoor F., Siebbeles L., Houtepen A., Suenaga K., Fujiwara Y., Gregorkiewicz T. Efficient carrier multiplication in CsPbI3 perovskite nanocrystals, Nature Communications 9 (2018) 4199.
- [3] Żdanowicz T. Odbiór systemu fotowoltaicznego (PV) – procedury i dokumentacja – cz. 2, Magazyn fotowoltaika, 1 (2018) 16-20.
- [4] Żdanowicz T. Pomiary ogniw i modułów fotowoltaicznych – normy i praktyka, Cz. II. Pomiary w warunkach laboratoryjnych – błędy powodowane źródłem światła, Magazyn fotowoltaika, 1 (2020) 20-24.
- [5] Li M., He F. Organic solar cells developments: What’s next? Next Energy 2 (2024) 100085
- [6] Solak E.K., Irmak E. Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance, RSC Adv., 13 (2023) 12244 -12269.
- [7] Jiang Y., Bai Y., Wang S. Organic solar cells: From fundamental to application, Energies,16 (2023) 2262.
- [8] Kirchartz T., Kaienburg P., Baran D. Figures of merit guiding research on organic solar cells, J. Phys. Chem. C 122 (2018) 5829 – 5843.
- [9] Wu J., Gao M., Chai Y., Liu P., Zhang B., Liu J., Ye L. Towards a bright future: The versatile applications of organic solar cells, Materials Reports: Energy 1 (2021) 100062.
- [10] Sun L., Fukuda K., Someya T. Recent progress in solutionprocessed flexible organic photovoltaics, npj Flexible Electronics 6 (2022) 89.
- [11] Lee H., Jeong S., Kim J.H., Jo Y.R., Eun H.J., Park B., Yoon S.C., Kim J.H., Lee S.H., Park S. Ultra-flexible semitransparent organic photovoltaics, npj Flexible Electronics 7 (2023) 27.
- [12] Weerasinghe H.C., Macadam N., et al. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions, Nature Communications 15 (2024) 1656.
- [13] Yi J., Zhang G., Yu, H. et al. Advantages, challenges and molecular design of different material types used in organic solar cells, Nat Rev Mater 9 (2024) 46–62.
- [14] Ullah F., Chen C.C., Choy W.C.H. Recent developments in organic tandem solar cells toward high efficiency, Adv. Energy Sustainability Res. 2 (2021) 2000050.
- [15] Munoz-Garcıa A.B., Benesperi I., et al. Dye-sensitized solar cells strike back, Chem. Soc. Rev., 50 (2021) 12450-12550.
- [16] Liu S., Biju V.P., Qi Y., Chen W., Liu Z. Recent progress in the development of high-efficiency inverted perovskite solar cells, npg Asia Materials 15 (2023) 27.
- [17] Cui Y., Wang Y., Bergqvist J. et al. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications, Nat Energy 4 (2019) 768–775.
- [18] Cellura M., Luu l.Q., Guarino F., Longo S. A review on life cycle environmental impacts of emerging solar cells, Science of the Total Environment 908 (2024) 168019.
- [19] Riede M., Spoltore D., Leo K. Organic solar cells—The Path to Commercial Success, Adv. Energy Mater. 11 (2021) 2002653.
- [20] Muteri V., Cellura M., Curto D., Franzitta V., Longo S., Mistretta M., Parisi M.L. Review on life cycle assessment of solar photovoltaic panels, Energies 13 (2020) 252.
- [21] Song H., Luo S., Huang H., Deng B., Ye J. Solar-driven hydrogen production: Recent advances, challenges, and future perspectives, ACS Energy Lett. 7 (2022) 1043-1065.
- [22] Ding P., Yang D., Yanga S., Ge Z. Stability of organic solar cells: toward commercial applications, Chem. Soc. Rev., 53 (2024) 2350-2387.
- [23] Duan L., Uddin A., Progress in stability of organic solar cells, Adv. Sci. 7 (2020) 1903259.
- [24] Li Q., Monticelli C., Zanelli A. Life cycle assessment of organic solar cells and perovskite solar cells with graphene transparent electrodes, Renewable Energy, 195 (2022) 906-917.
- [25] Dipta S.S., Schoenlaub J., Rahaman M.H., Uddin A. Estimating the potential for semitransparent organic solar cells in agrophotovoltaic greenhouses, Applied Energy, 328 (2022) 120208.
- [26] Meitzner R., Schubert U.S., Hoppe H. Agrivoltaics - The perfect fit for the future of organic photovoltaics, Adv. Energy Mater. 11 (2021) 2002551.
- [27] Bogdanowicz K.A., Iwan A. Review on thermoelectrical properties of selected imines in neat and multicomponent layers towards organic opto-electronics and photovoltaics, Opto-Electronics Review 29, 4 (2021) 201-212.
- [28] Rodríguez-Mas F., Valiente D., Ferrer J.C., Alonso J.L., de Avila S.F. Towards a greener photovoltaic industry: Enhancing efficiency, environmental sustainability and manufacturing costs through solvent optimization in organic solar cells, Heliyon 9 (2023) e23099.
- [29] Ganesan S., Mehta S., Gupta D., Fully printed organic solar cells – a review of techniques, challenges and their solutions, Opto-Electronics Review 27 (2019) 298-320.
- [30] Lu X., Xie C., Liu Y. et al. Increase in the efficiency and stability of large-area flexible organic photovoltaic modules via improved electrical contact, Nat Energy (2024).
- [31] Yang F., Huang Y., Li Y., Li Y. Large-area flexible organic solar cells, npj Flexible Electronics 5 (2021) 30.
- [32] Li S., Li Z., Wan X., Chen Y. Recent progress in flexible organic solar cells, eScience 3 (2023) 100085.
- [33] Sun Y., Liu T., Kan Y., Gao K., Tang B., Li Y. Flexible organic solar cells: Progress and challenges, Small Sci. 1 (2021) 2100001.
- [34] Lee J., Park S.A., Ryu S.U., Chung D., Park T., Son S.Y. Green-solvent-processable organic semiconductors and future directions for advanced organic electronics, J. Mater. Chem. A, 8 (2020) 21455-21473.
- [35] Ahmed U., Alizadeh M., Rahim N.A., Shahabuddin S., Ahmed M.S., Pandey A.K. A comprehensive review on counter electrodes for dye sensitized solar cells: A special focus on Pt- TCO free counter electrodes, Solar Energy, 174 (2018) 1097- 1125.
- [36] Sen A., Putra M.H., Biswas A.K., Behera A.K., Groβ A. Insight on the choice of sensitizers/dyes for dye sensitized solar cells: A review, Dyes and Pigments, 213 (2023) 111087.
- [37] Yue Z., Guo H., Cheng Y. Toxicity of perovskite solar cells. Energies, 16 (2023) 4007.
- [38] Saliba M., Matsui T., Domanski K., Seo J.Y., Ummadisingu A., Zakeeruddin S.M., Correa-Baena J.P., Tress W.R., Abate A., Hagfeldt A., Grätzel M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, 6309 (2016) 206-209.
- [39] Khatoon S., Yadav S.K., Chakravorty V., Singh J., Singh R.B., Hasnain M.S., Mozammil Hasnain S.M. Perovskite solar cell’s efficiency, stability and scalability: A review, Materials Science for Energy Technologies 6 (2023) 437-459.
- [40] Chowdhury T.A., Zafar M.A.B., Sajjad-Ul Islam M., Shahinuzzaman M., Islam M.A., Khandaker M.U. Stability of perovskite solar cells: issues and prospects, RSC Adv. 13 (2023) 1787.
- [41] Duan L., Walter D., Chang N., Bullock J., Kang D., Phang S.P., Weber K., White T., Macdonald D., Catchpole K., Shen H. Stability challenges for the commercialization of perovskite– silicon tandem solar cells, Nature Reviews Materials 8 (2023) 261-281.
- [42] Lu Q., Yang Z., Meng X., Yue Y., Ahmad M.A., Zhang W., Zhang S., Zhang Y., Liu Z., Chen W. A review on encapsulation technology from organic light emitting diodes to organic and perovskite solar cells, Advanced Functional Materials 31, 23 (2021) 2100151.
- [43] Luo D., Jang W., Babu D.D., Kim M.S., Wang D.H., Kyaw A.K.K. Recent progress in organic solar cells based on nonfullerene acceptors: materials to devices, J. Mater. Chem. A, 10 (2022) 3255-3295.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a704dc1-17a8-4375-8052-e0103e9aacc9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.