Identyfikatory
Warianty tytułu
Wytyczne do modelowania mes belek drewno-CFRP z wykorzystaniem programu ABAQUS
Języki publikacji
Abstrakty
The article presents detailed guidelines for the nonlinear modelling of wood-CFRP beams with full cross-section using the Finite Element Method (FEM). Reviewing the literature has shown that behaviour of such composites is a current research topic, undertaken by many scientists. Complex numerical models made in the Simulia ABAQUS software are the basis for modelling recommendations. Properties of the materials consider the orthotropy and plasticity of wood and CFRP tapes, and the stiffness of adhesive layers with delamination. Results of laboratory experiments, got for a statistically significant number of specimens, confirm the model assumptions. This research paper provides a rich source of knowledge and experiences for scientists and engineers, who deal with mechanics of wood-CFRP composites. The uniqueness of the presentation lies in the detailed description of the complex numerical model. Specification comprises the steps necessary to do complete and successful calculations. The model is suitable for analysing the behaviour of wood-CFRP composites in different reinforcement configurations.
Artykuł przedstawia szczegółowe wytyczne do nieliniowego modelowania belek o pełnym przekroju wykonanych z kompozytu drewno-CFRP z wykorzystaniem Metody Elementów Skończonych (MES). Przegląd literatury pokazał, że zachowanie takich kompozytów jest aktualnym tematem badawczym, podejmowanym przez wielu naukowców. Podstawą zaproponowanych rekomendacji są złożone modele numeryczne wykonane w programie Simulia ABAQUS. Parametry materiałowe uwzględniają ortotropię plastyczność drewna i taśm CFRP, jak również sztywność warstw klejowych i możliwość ich delaminacji. Założenia modelu zostały potwierdzone badaniami laboratoryjnymi przeprowadzonymi na ważnej statystycznie liczbie próbek. Powyższe opracowanie zapewnia bogate źródło wiedzy i doświadczeń dla inżynierów i naukowców zajmujących się mechaniką kompozytów drewno-CFRP. Unikalność artykułu polega na dokładnym opisie złożonego modelu numerycznego, który przedstawia kroki niezbędne do wykonania kompletnych obliczeń.
Czasopismo
Rocznik
Tom
Strony
175--191
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
autor
- Lublin University of Technology, Faculty of Civil Engineering and Architecture, Lublin, Poland
Bibliografia
- [1] J. Fiorelli and A.A. Dias, “Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber”, Materials Research, vol. 6, no. 2, pp. 193-202, 2003, DOI: 10.1590/S1516-14392003000200014.
- [2] P.G. Kossakowski, “Load-Bearing Capacity of Wooden Beams Reinforced with Composite Sheets”, Structure, pp. 1-9, 2011.
- [3] Y.J. Kim and K. A. Harries, “Modeling of timber beams strengthened with various CFRP composites”, Engineering Structures, vol. 32, no. 10, pp. 3225-3234, 2010, DOI: 10.1016/j.engstruct.2010.06.011.
- [4] Y.J. Kim, M. Hossain, and K.A. Harries, “CFRP strengthening of timber beams recovered from a 32-year old quonset: Element and system level tests”, Engineering Structures, vol. 57, pp. 213-221, 2013, DOI: 10.1016/j.engstruct.2013.09.028.
- [5] M. Corradi et al., “Uncertainty analysis of FRP reinforced timber beams”, Composites Part B: Engineering, vol. 113, pp. 174-184, 2017, DOI: 10.1016/j.compositesb.2017.01.030.
- [6] A.M.P. de Jesus, J.M.T. Pinto, and J.J.L. Morais, “Analysis of solid wood beams strengthened with CFRP laminates of distinct lengths”, Construction and Building Materials, vol. 35, pp. 817-828, 2012, DOI: 10.1016/j.conbuildmat.2012.04.124.
- [7] K. Andor et al., “Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric”, Construction and Building Materials, vol. 99, pp. 200-207, 2015, DOI: 10.1016/j.conbuildmat.2015.09.026.
- [8] A. Borri, M. Corradi, and A. Grazini, “A method for flexural reinforcement of old wood beams with CFRP materials”, Composites Part B: Engineering, vol. 36, no. 2, pp. 143-153, 2005, DOI: 10.1016/j.compositesb. 2004.04.013.
- [9] P. de la Rosa García et al., “Bending reinforcement of timber beams with composite carbon fiber and basalt fiber materials”, Composites, Part B: Engineering, vol. 55, pp. 528-536, 2013, DOI: 10.1016/j.compositesb. 2013.07.016.
- [10] P. de la Rosa García, A. Cobo Escamilla, and M.N. González García, “Analysis of the flexural stiffness of timber beams reinforced with carbon and basalt composite materials”, Composites, Part B: Engineering, vol. 86, pp. 152-159, 2016, DOI: 10.1016/j.compositesb.2015.10.003.
- [11] B. Kawecki and J. Podgórski, “The Effect of Glue Cohesive Stiffness on the Elastic Performance of Bent Wood-CFRP Beams”, Materials, vol. 13, no. 22, pp. 1-23, 2020, DOI: 10.3390/ma13225075.
- [12] L.J. Jankowski, J. Jasienko, and T.P. Nowak, “Experimental assessment of CFRP reinforced wooden beams by 4-point bending tests and photoelastic coating technique”, Materials and Structures, vol. 43, no. 1-2, pp. 141-150, 2010, DOI: 10.1617/s11527-009-9476-0.
- [13] T.P. Nowak, J. Jasienko, and D. Czepizak, “Experimental tests and numerical analysis of historic bent timber elements reinforced with CFRP strips”, Construction and Building Materials, vol. 40, pp. 197-206, 2013, DOI: 10.1016/j.conbuildmat.2012.09.106.
- [14] K.U. Schober and K. Rautenstrauch, “Post-strengthening of timber structures with CFRP’s”, Materials and Structures, vol. 40, no. 1, pp. 27-35, 2007, DOI: 10.1617/s11527-006-9128-6.
- [15] A.Vahedian, R. Shrestha, and K. Crews, “Experimental and analytical investigation on CFRP strengthened glulam laminated timber beams: Full-scale experiments”, Composites Part B: Engineering, vol. 164, pp. 377-389, 2019, DOI: 10.1016/j.compositesb.2018.12.007.
- [16] E.R. Thorhallsson, G.I. Hinriksson, and J.T. Snæbjörnsson, “Strength and stiffness of glulam beams reinforced with glass and basalt fibres”, Composites Part B: Engineering, vol. 115, pp. 300-307, 2017, DOI: 10.1016/j.compositesb.2016.09.074.
- [17] M. Brunetti et al., “Production feasibility and performance of carbon fibre reinforced glulam beams manufactured with polyurethane adhesive”, Composites Part B: Engineering, vol. 156, pp. 212-219, 2019, DOI: 10.1016/j.compositesb.2018.08.075.
- [18] I. Glišović et al., “Glulam beams externally reinforced with CFRP plates”, Wood Research, vol. 61, no. 1, pp. 141-154, 2016.
- [19] I. Glišović, B. Stevanović, and M. Todorović, “Flexural reinforcement of glulam beams with CFRP plates”, Materials and Structures, vol. 49, no. 7, pp. 2841-2855, 2016, DOI: 10.1617/s11527-015-0690-7.
- [20] M. Subhani, A. Globa, R. Al-Ameri, and J. Moloney, “Flexural strengthening of LVL beam using CFRP”, Construction and Building Materials, vol. 150, pp. 480-489, 2017, DOI: 10.1016/j.conbuildmat.2017.06.027.
- [21] J. Fiorelli and A.A. Dias, “Glulam beams reinforced with FRP externally-bonded: theoretical and experimental evaluation”, Materials and Structures, vol. 44, no. 8, pp. 1431-1440, 2011, DOI: 10.1617/s11527-011-9708-y.
- [22] G.M. Raftery and A.M. Harte, “Low-grade glued laminated timber reinforced with FRP plate”, Composites Part B: Engineering, vol. 42, no. 4, pp. 724-735, 2011, DOI: 10.1016/j.compositesb.2011.01.029.
- [23] G.M. Raftery and A.M. Harte, “Nonlinear numerical modelling of FRP reinforced glued laminated timber”, Composites Part B: Engineering, vol. 52, pp. 40-50, 2013, DOI: 10.1016/j.compositesb.2013.03.038.
- [24] G.M. Raftery and P.D. Rodd, “FRP reinforcement of low-grade glulam timber bonded with wood adhesive”, Construction and Building Materials, vol. 91, pp. 116-125, 2015, DOI: 10.1016/j.conbuildmat.2015.05.026.
- [25] S. Osmannezhad, M. Faezipour, and G. Ebrahimi, “Effects of GFRP on bending strength of glulam made of poplar (Populus deltoids) and beech (Fagus orientalis)”, Construction and Building Materials, vol. 51, pp. 34-39, 2014, DOI: 10.1016/j.conbuildmat.2013.10.035.
- [26] H. Shi et al., “Flexural responses and pseudo-ductile performance of lattice-web reinforced GFRP-wood sandwich beams”, Composites Part B: Engineering, vol. 108, pp. 364-376, 2017, DOI: 10.1016/j.compositesb.2016.10.009.
- [27] I. Glišović et al., “Numerical analysis of glulam beams reinforced with CFRP plates”, Journal of Civil Engineering and Management, vol. 23, no. 7, pp. 868-879, 2017, DOI: 10.3846/13923730.2017.1341953.
- [28] M. Khelifa et al., “Finite element analysis of flexural strengthening of timber beams with Carbon Fibre-Reinforced Polymers”, Engineering Structures, vol. 101, pp. 364-375, 2015, DOI: 10.1016/j.engstruct.2015.07.046.
- [29] Simulia ABAQUS, User’s Guide, 2019.
- [30] B. Kawecki and J. Podgórski, “3D ABAQUS simulation of bent softwood elements”, Archives of Civil Engineering, vol. 66, no. 3, pp. 323-337, 2020, DOI: 10.24425/ace.2020.134400.
- [31] A. Turon et al., “An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models”, Engineering Fracture Mechanics, vol. 74, no. 10, pp. 1665-1682, 2007, DOI: 10.1016/j.engfracmech.2006.08.025.
- [32] M.L. Benzeggagh and M. Kenane, “Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus”, Composites Science and Technology, vol. 56, pp. 439-449, 1996, DOI: 10.1016/0266-3538(96)00005-X.
- [33] B.H. Xu et al., “Fracture toughnesses of interlaminar fracture of glued-laminated timber”, Wood Research, vol. 61, no. 6, pp. 951-958, 2016.
- [34] A. Demir et al., “Effect of viscosity parameter on the numerical simulation of reinforced concrete deep beam behavior”, The Online Journal of Science and Technology, vol. 8, no. 3, pp. 50-56, 2018.
- [35] R.H. Hemanth et al., “Performance evaluation of finite elements for analysis of advanced hybrid laminates”, in ABAQUS User’s Conference, pp. 1-15, 2010.
- [36] P.P. Camanho et al., “Numerical simulation of mixed-mode progressive delamination in composite materials”, Journal of Composite Materials, vol. 37, no. 16, pp. 1415-1438, 2003, DOI: 10.1177/0021998303034505.
- [37] L. Vu-Quoc and X.G. Tan, “Optimal solid shells for non-linear analyses of multilayer composites. I. Statics”, Computer Methods in Applied Mechanics and Engineering, vol. 192, no. 9-10, pp. 975-1016, 2003, DOI: 10.1016/S0045-7825(02)00435-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a6cad56-e2c5-430b-8f2f-f4133439ad08