PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of heavy metals from groundwater affected by acid mine drainage

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Batch tests have been used to assess the level of the removal of metals (copper, nickel, cobalt, zinc, and chromium, in cationic and in anionic forms) from water at low pH values affected by acid mine drainage. The predominant processes which result in the removal with the use of zero-valent iron (Fe0) in Permeable Reactive Barrier Technology were evaluated. The most probable processes for each metal have been presented in drawings. There are: reductive precipitation leading to the metallic form, co-precipitation mainly with iron in the form of oxides and/or hydroxides and adsorption on the surface of iron corrosion products or on the surface of zero-valent iron.
Rocznik
Strony
359--372
Opis fizyczny
Bibliogr. 21 poz., rys. tab.
Twórcy
autor
  • Politechnika Slaska, Wydział Gornictwa i Geologii, ul. Akademicka 2; 44-100 Gliwice, Poland
autor
  • University of Vigo, Spain
Bibliografia
  • 1. BUTLER J.N. WITH A CHAPTER BY COGLEY D. R., 1998, Ionic equilibrium, solubility and pH calculations, John Wiley and Sons, Inc.
  • 2. CORNELL R.M., SCHWERTMANN U., 2003, The iron oxides: structure, properties, reactions, occurrences and uses, Wiley VCH.
  • 3. DJAFER M., LAMY I., TERCE M., 1989, Interaction of metallic cations with the hydrous goethite (α–FeOOH) surface, Progress in Colloid and Polymer Science, vol. 79, 150–154.
  • 4. FIORE, S., ZANETTI M. C., 2009, Preliminary Tests Concerning Zero–Valent Iron Efficiency in Inorganic Pollutants Remediation, American Journal of Environmental Sciences, 5(4), 556–561.
  • 5. GROUDEV S., SPASOVA I., NICOLOVA M., GEORGIEV P., 2007, Acid Mine drainage cleanup in a uranium deposit by means of a passive treatment system, Physicochemical Problems of Mineral Processing, vol. 41, 265–274.
  • 6. HUANG H.H., TWIDWELL L.G., YOUNG C.A., 2005, Point of Zero Charge (PZC) and Double Layer Adsorption – An Equilibrium Calculation Approach, Computational Analysis in Hydrometallurgy, COM 2005 Calgary Canada August.
  • 7. ITRC (Interstate Technology & Regulatory Council), 2011, Permeable Reactive Barrier: Technology Update, PRB–5. Washington, D.C.: Interstate Technology & Regulatory Council, PRB: Technology Update Team. Washington: http://www.itrcweb.org.
  • 8. JENNINGS S.R., NEUMAN D.R., BLICKER P.S., 2008, Acid mine drainage and effects on fish health and ecology: a review, Reclamation Research Group Publication, Bozeman, MT.
  • 9. KLIMKOVA S., CERNIK M., LACINOVA L., FILIP J., JANCIK D., ZBORIL R., 2011, Zero–valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching, Chemosphere, Vol. 82, Iss. 8, 1178–1184.
  • 10. KOWAL L. A., ŚWIDERSKA–BRÓŻ M. 1996, Oczyszczanie wody, PWN, Warszawa–Wrocław.
  • 11. LI, X.–Q., ZHANG W. X., 2007, Sequestration of Metal Cations with Zerovalent Iron Nanoparticles: A Study with High Resolution X–Ray Photoelectron Spectroscopy (HRXPS), Journal of Physical Chemistry, 111(19), 6939–6946.
  • 12. LAGASHETTY A., VIJAYANAND H., BASAVARAJA S., MALLIKARJUNA N.N., VENKATARAMAN A., 2010, Lead adsorption study on combustion derived γ–Fe2O3 surface, Bulletin of Materials Science, Vol. 33, Iss. 1, 1–6.
  • 13. MUSIC S., RISTIC M., 1988, Adsorption of trace elements or radionuclides on hydrous iron oxides, Journal of Radioanalytical and Nuclear Chemistry, Vol. 120, No. 2, 289–304.
  • 14. PULS R. W., POWELL M. R., BLOWES D. W., GILLHAM R. W., SCHULTZ D., SIVAVEC T., VOGAN J. L., POWELL P. D., 1998, Permeable reactive barrier technologies for contaminant remediation, Washington: United States Environmental Protection Agency.
  • 15. PULS R.W., PAUL C.J., POWELL R.M., 1999, The application of in situ permeable reactive (zero–valent iron) barrier technology for the remediation of chromate–contaminated groundwater: a field test, Applied Geochemistry, 14, 989–1000.
  • 16. RANGSIVEK, R., JEKEL M. R., 2005, Removal of Dissolved Metals by Zero–Valent Iron (ZVI): Kinetics, Equilibria, Processes and Implications for Stormwater Runoff Treatment, Water Research 39, 4153–4163.
  • 17. SUPONIK T., 2012, Removing contaminants from groundwater polluted by the Trzebionka Mine Settling Pond located in Upper Silesia (Poland), Physicochemical Problems of Mineral Processing, Vol. 48, issue 1, pp. 169–180.
  • 18. SUPONIK T., 2013, Groundwater treatment with the use of zero–valent iron in the Permeable Reactive Barrier Technology, Physicochemical Problems of Mineral Processing, Vol. 49, Iss. 1, 13–23
  • 19. SUPONIK T., in press, Zero–valent iron for inorganic contaminants removal from low pH water, accepted for publication in Environment Protection Engineering.
  • 20. WILKIN R. T., MCNEIL M. S., 2003, Laboratory evaluation of zero–valent iron to treat water impacted by acid mine drainage, Chemosphere, 53, 715–725.
  • 21. XU CHUNHUA, CHENG DANDAN, YUE QINYAN, YIN ZHILEI, GAO BAOYU, ZHAO XIAN, 2010, Adsorption of Cr (VI) from Aqueous Solution withnano β–FeOOH, International Conference on Bioinformatics and Biomedical Engineering – ICBBE, 1–4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a645f60-cd61-4155-bdd2-8c3c9569b8ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.