Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Manual delineation of tumours in breast histopathology images is generally time-consuming and laborious. Computer-aided detection systems can assist pathologists by detecting abnormalities faster and more efficiently. Convolutional Neural Networks (CNN) and transfer learning have shown good results in breast cancer classification. Most of the existing research works employed State-of-the-art pre-trained architectures for classification. But the performance of these methods needs to be improved in the context of effective feature learning and refinement. In this work, we propose an ensemble of two CNN architectures integrated with Channel and Spatial attention. Features from the histopathology images are extracted parallelly by two powerful custom deep architectures namely, CSAResnet and DAMCNN. Finally, ensemble learning is employed for further performance improvement. The proposed framework was able to achieve a classification accuracy of 99.55% on the BreakHis dataset.
Wydawca
Czasopismo
Rocznik
Tom
Strony
963--976
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
autor
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
autor
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
autor
- School of Mechanical Engineering, Vellore Institute of Technology, Chennai, India
Bibliografia
- [1] American Cancer Society. Cancer Facts and Figures 2021. Atlanta, Ga: American Cancer Society; 2021.
- [2] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J Clin 2021;71(3):209–49.
- [3] Ataollahi MR, Sharifi J, Paknahad MR, Paknahad A. Breast cancer and associated factors: a review. J Med Life. 2015;8(Spec Iss 4):6-11. PMID: 28316699; PMCID: PMC5319297.
- [4] Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, et al. Risk factors and preventions of breast cancer. Int J Biol Sci 2017;13(11):1387–97.
- [5] FIORICA, J. V. (2016). Breast Cancer Screening, Mammography, and Other Modalities. In Clinical Obstetrics & Gynecology (Vol. 59, Issue 4, pp. 688–709). Ovid Technologies (Wolters Kluwer Health). doi: 10.1097/grf.0000000000000246.
- [6] Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res 2010;12(4).
- [7] He L, Long LR, Antani S, Thoma GR. (2012). Histology image analysis for carcinoma detection and grading. In Computer Methods and Programs in Biomedicine (Vol. 107, Issue 3, pp. 538–556). Elsevier BV. https://doi.org/10.1016/j.cmpb.2011.12.007 Gruber, Ines & Rueckert, Miriam & Kagan, Karl & Staebler, Annette & Siegmann-Luz, Katja & Hartkopf, Andreas & Wallwiener, Dr. Diethelm & Hahn, Markus. (2013). Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer. BMC cancer. 13. 328. 10.1186/1471-2407-13-328.
- [8] Gruber IV, Rueckert M, Kagan KO, Staebler A, Siegmann KC, Hartkopf A, et al. Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer. BMC Cancer 2013;13(1).
- [9] Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res 2017;50(1).
- [10] Kumar R, Srivastava R, Srivastava S. Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features. J Med Eng 2015;2015:1–14.
- [11] Gardezi SJS, Elazab A, Lei B, Wang T. (2019). Breast Cancer Detection and Diagnosis Using Mammographic Data: Systematic Review. In Journal of Medical Internet Research (Vol. 21, Issue 7, p. e14464). JMIR Publications Inc. doi: 10.2196/14464.
- [12] Le EPV, Wang Y, Huang Y, Hickman S, Gilbert FJ. Artificial intelligence in breast imaging. Clin Radiol 2019;74(5):357–66.
- [13] Dromain C, Boyer B, Ferré R, Canale S, Delaloge S, Balleyguier C. Computed-aided diagnosis (CAD) in the detection of breast cancer. Eur J Radiol 2013;82(3):417–23.
- [14] R., K., & K., N. (2018). Automated Diagnosis of Breast Cancer Using Wavelet Based Entropy Features. In 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE. doi: 10.1109/iceca.2018.8474739.
- [15] Gupta V, Bhavsar A. (2017). Breast Cancer Histopathological Image Classification: Is Magnification Important? In 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE. doi: 10.1109/cvprw.2017.107.
- [16] Singh BK. Determining relevant biomarkers for prediction of breast cancer using anthropometric and clinical features: A comparative investigation in machine learning paradigm. Biocybernetics and Biomedical Engineering 2019;39(2):393–409.
- [17] Khuriwal N, Mishra N. (2018). Breast cancer diagnosis using adaptive voting ensemble machine learning algorithm. In 2018 IEEMA Engineer Infinite Conference (eTechNxT). 2018 IEEMA Engineer Infinite Conference (eTechNxT). IEEE. doi: 10.1109/etechnxt.2018.8385355.
- [18] Zhang Y, Zhang B, Coenen F, Xiao J, Lu W. One-class kernel subspace ensemble for medical image classification. EURASIP J Adv Signal Process 2014;2014(1).
- [19] Alirezazadeh P, Hejrati B, Monsef-Esfahani A, Fathi A. Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images. Biocybernetics Biomed Eng 2018;38(3):671–83.
- [20] Dimitropoulos K, Barmpoutis P, Zioga C, Kamas A, Patsiaoura K, Grammalidis N. (2017). Grading of invasive breast carcinoma through Grassmannian VLAD encoding. In A. Ahmad (Ed.), PLOS ONE (Vol. 12, Issue 9, p. e0185110). Public Library of Science (PLoS). doi: 10.1371/journal.pone.0185110.
- [21] Bahlmann C, Patel A, Johnson J, Ni J, Chekkoury A, Khurd P, et al. (2012). Automated detection of diagnostically relevant regions in H&E stained digital pathology slides. In B. van Ginneken & C. L. Novak (Eds.), SPIE Proceedings. SPIE. doi: 10.1117/12.912484.
- [22] Sudharshan PJ, Petitjean C, Spanhol F, Oliveira LE, Heutte L, Honeine P. Multiple instance learning for histopathological breast cancer image classification. Expert Systems with Applications, Vol. 117. Elsevier BV; 2019. p. 103–11. https://doi.org/10.1016/j.eswa.2018.09.049.
- [23] Sammut S-J, Crispin-Ortuzar M, Chin S-F, Provenzano E, Bardwell HA, Ma W, et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 2022;601(7894):623–9.
- [24] Karthik R, Menaka R, Hariharan M, Won D. (2021). Ischemic Lesion Segmentation using Ensemble of Multi-Scale Region Aligned CNN. In Computer Methods and Programs in Biomedicine (Vol. 200, p. 105831). Elsevier BV. doi: 10.1016/j.cmpb.2020.105831.
- [25] Chang J, Yu J, Han T, Chang H, Park E. (2017). A method for classifying medical images using transfer learning: A pilot study on histopathology of breast cancer. In 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom). 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom). IEEE. doi: 10.1109/healthcom.2017.8210843.
- [26] Hou Y. (2020). Breast cancer pathological image classification based on deep learning. In Journal of X-Ray Science and Technology (Vol. 28, Issue 4, pp. 727–738). IOS Press. doi: 10.3233/xst-200658.
- [27] Gupta K, Chawla N. (2020). Analysis of Histopathological Images for Prediction of Breast Cancer Using Traditional Classifiers with Pre-Trained CNN. In Procedia Computer Science (Vol. 167, pp. 878–889). Elsevier BV. doi: 10.1016/j.procs.2020.03.427.
- [28] Sun J, Binder A. (2017). Comparison of deep learning architectures for H&E histopathology images. In 2017 IEEE Conference on Big Data and Analytics (ICBDA). 2017 IEEE Conference on Big Data and Analytics (ICBDA). IEEE. doi: 10.1109/icbdaa.2017.8284105.
- [29] El Agouri H, Azizi M, El Attar H, El Khannoussi M, Ibrahimi A, Kabbaj R, et al. Assessment of deep learning algorithms to predict histopathological diagnosis of breast cancer: first Moroccan prospective study on a private dataset. BMC Res Notes 2022;15(1).
- [30] Gour M, Jain S, Sunil Kumar T. Residual learning based CNN for breast cancer histopathological image classification. Int J Imaging Syst Technol 2020;30(3):621–35.
- [31] Al-Haija QA, Adebanjo A. (2020). Breast Cancer Diagnosis in Histopathological Images Using ResNet-50 Convolutional Neural Network. In 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). IEEE. doi: 10.1109/iemtronics51293.2020.9216455.
- [32] Yamlome P, Akwaboah AD, Marz A, Deo M. (2020). Convolutional Neural Network Based Breast Cancer Histopathology Image Classification. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE. doi: 10.1109/embc44109.2020.9176594.
- [33] Spanhol FA, Oliveira LS, Petitjean C, Heutte L. (2016). Breast cancer histopathological image classification using Convolutional Neural Networks. In 2016 International Joint Conference on Neural Networks (IJCNN). 2016 International Joint Conference on Neural Networks (IJCNN). IEEE. doi: 10.1109/ijcnn.2016.7727519.
- [34] Karthiga R, Usha G, Raju N, Narasimhan K. (2021). Transfer Learning Based Breast cancer Classification using One-Hot Encoding Technique. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). IEEE. doi: 10.1109/icais50930.2021.9395930.
- [35] Albashish D, Al-Sayyed R, Abdullah A, Ryalat MH, Ahmad Almansour N. Deep CNN Model based on VGG16 for Breast Cancer Classification. In: In 2021 International Conference on Information Technology (ICIT). 2021 International Conference on Information Technology (ICIT). IEEE. https://doi.org/10.1109/icit52682.2021.9491631.
- [36] Sabeena Beevi K, Nair MS, Bindu GR. Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning. Biocybernetics Biomed Eng 2019;39(1):214–23.
- [37] Liew XY, Hameed N, Clos J. (2021). An investigation of XGBoost-based algorithm for breast cancer classification. In Machine Learning with Applications (Vol. 6, p. 100154). Elsevier BV. doi: 10.1016/j.mlwa.2021.100154.
- [38] Khan S, Islam N, Jan Z, Ud Din I, Rodrigues JJPC. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn Lett 2019;125:1–6.
- [39] Khan SI, Shahrior A, Karim R, Hasan M, Rahman A. MultiNet: A deep neural network approach for detecting breast cancer through multi-scale feature fusion. J King Saud Univ –Comput Information Sci 2021.
- [40] Dabeer S, Khan MM, Islam S. (2019). Cancer diagnosis in histopathological image: CNN based approach. In Informatics in Medicine Unlocked (Vol. 16, p. 100231). Elsevier BV. doi: 10.1016/j.imu.2019.100231.
- [41] Gamble P, Jaroensri R, Wang H, Tan F, Moran M, Brown T, et al. Determining breast cancer biomarker status and associated morphological features using deep learning. Commun Med 2021;1(1).
- [42] Wang D, Chen Z, Zhao H. (2021). Prototype transfer generative adversarial network for unsupervised breast cancer histology image classification. In Biomedical Signal Processing and Control (Vol. 68, p. 102713). Elsevier BV. doi: 10.1016/j.bspc.2021.102713.
- [43] Sui D, Liu W, Chen J, Zhao C, Ma X, Guo M, et al. A pyramid architecture-based deep learning framework for breast cancer detection Hindawi Limited. Biomed Res Int 2021;2021:1–10. https://doi.org/10.1155/2021/2567202.
- [44] Saini M, Susan S. Deep transfer with minority data augmentation for imbalanced breast cancer dataset. Appl Soft Comput 2020;97:106759. https://doi.org/10.1016/j.asoc.2020.106759.
- [45] Ting FF, Tan YJ, Sim KS. (2019). Convolutional neural network improvement for breast cancer classification. In Expert Systems with Applications (Vol. 120, pp. 103–115). Elsevier BV. doi: 10.1016/j.eswa.2018.11.008.
- [46] Chen X, Chen DG, Zhao Z, Balko JM, Chen J. Artificial image objects for classification of breast cancer biomarkers with transcriptome sequencing data and convolutional neural network algorithms. Breast Cancer Res 2021;23(1).
- [47] Chen CX, Park HS, Price H, Wax A (2021). Automated Classification of Breast Cancer Cells Using High-Throughput Holographic Cytometry. In Frontiers in Physics (Vol. 9). Frontiers Media SA. doi: 10.3389/fphy.2021.759142.
- [48] Veta M, van Diest PJ, Jiwa M, Al-Janabi S, Pluim JPW. (2016). Mitosis Counting in Breast Cancer: Object-Level Interobserver Agreement and Comparison to an Automatic Method. In A. Sapino (Ed.), PLOS ONE (Vol. 11, Issue 8, p. e0161286). Public Library of Science (PLoS). doi: 10.1371/journal.pone.0161286.
- [49] Dalwinder S, Birmohan S, Manpreet K. Simultaneous feature weighting and parameter determination of Neural Networks using Ant Lion Optimization for the classification of breast cancer. Biocybernetics Biomed Eng 2020;40(1):337–51.
- [50] Kriti, Virmani J, Agarwal R. Assessment of despeckle filtering algorithms for segmentation of breast tumours from ultrasound images. Biocybernetics Biomed Eng 2019;39(1):100–21.
- [51] Priego-Torres BM, Sanchez-Morillo D, Fernandez-Granero MA, Garcia-Rojo M. Automatic segmentation of whole-slide H&E stained breast histopathology images using a deep convolutional neural network architecture. Expert Syst Appl 2020;151:113387.
- [52] Ye J, Yang W, Wang J, Xu X, Li L, Xie C, et al. Automated segmentation of mass regions in DBT images using a dilated DCNN approach. Computational Intelligence Neurosci 2022;2022:1–10.
- [53] Mohamed EA, Rashed EA, Gaber T, Karam O. (2022). Deep learning model for fully automated breast cancer detection system from thermograms. In R. Damaševičius (Ed.), PLOS ONE (Vol. 17, Issue 1, p. e0262349). Public Library of Science (PLoS). doi: 10.1371/journal.pone.0262349.
- [54] Vellal AD, Sirinukunwattan K, Kensler KH, Baker GM, Stancu AL, Pyle ME, et al. (2021). Deep Learning Image Analysis of Benign Breast Disease to Identify Subsequent Risk of Breast Cancer. In JNCI Cancer Spectrum (Vol. 5, Issue 1). Oxford University Press (OUP). doi: 10.1093/jncics/pkaa119.
- [55] Mehta S, Mercan E, Bartlett J, Weave D, Elmore JG, Shapiro L. (2018). Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images (Version 1). arXiv. doi: 10.48550/ARXIV.1806.01313.
- [56] Byra M, Jarosik P, Dobruch-Sobczak K, Klimonda Z, Piotrzkowska-Wroblewska H, Litniewski J, et al. Joint segmentation and classification of breast masses based on ultrasound radio-frequency data and convolutional neural networks. Ultrasonics 2022;121:106682.
- [57] Moreau N, Rousseau C, Fourcade C, Santini G, Brennan A, Ferrer L, et al. (2021). Automatic Segmentation of Metastatic Breast Cancer Lesions on 18F-FDG PET/CT Longitudinal Acquisitions for Treatment Response Assessment. In Cancers (Vol. 14, Issue 1, p. 101). MDPI AG. doi: 10.3390/cancers14010101.
- [58] Gastounioti A, Desai S, Ahluwalia VS, Conant EF, Kontos D. (2022). Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. In Breast Cancer Research (Vol. 24, Issue 1). Springer Science and Business Media LLC. doi: 10.1186/s13058-022-01509-z.
- [59] Lagree A, Mohebpour M, Meti N, Saednia K, Lu F-I, Slodkowska E, et al. A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks. Sci Rep 2021;11(1).
- [60] Zhang Y-N, Xia K-R, Li C-y, Wei B-l, Zhang B, Zhang L. Review of breast cancer pathological image processing. Biomed Res Int 2021;2021:1–7.
- [61] Zhou X, Li C, Rahaman MM, Yao Y, Ai S, Sun C, et al. A comprehensive review for breast histopathology image analysis using classical and deep neural networks. IEEE Access 2020;8:90931–56.
- [62] Sangha GS, Hu B, Li G, Fox SE, Sholl AB, Brown JQ, et al. Assessment of photoacoustic tomography contrast for breast tissue imaging using 3D correlative virtual histology. Sci Rep 2022;12(1).
- [63] Danch-Wierzchowska M, Borys D, Bobek-Billewicz B, Jarzab M, Swierniak A. Simplification of breast deformation modelling to support breast cancer treatment planning. Biocybernetics Biomed Eng 2016;36(4):531–6.
- [64] ICIAR 2018 grand challenge: In 15th International Conference on Image Analysis, Recognition. https://iciar2018-challenge.grandchallenge.org/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a638be3-6be6-40dd-9271-a0c5409cd8cd