PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Open beam dosimetric characteristics of True Beam medical linear accelerator with flattening filter (WFF) and flattening filter free (FFF) beam

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
True Beam medical linear accelerator is capable of delivering flattening filter free (FFF) and with flattening filter (WFF) photon beams. True Beam linear accelerator is equipped with five photon beam energies (6 FFF, 6 WFF, 10 FFF, 10 WFF and 15 WFF) as well as six electron beam energies (6 MeV, 9 MeV, 12 MeV, 15 MeV and 18 MeV). The maximum dose rate for the 6 WFF, 10 WFF and 15 WFF is 600 MU/min, whereas 6 FFF has a maximum dose rate of 1400 MU/min and 10 FFF with a maximum dose rate of 2400 MU/min. In this report we discussed the open beam dosimetric characteristics of True Beam medical linear accelerator with FFF and WFF beam. All the dosimetric data (i.e. depth dose, cross-line profiles, diagonal profiles, output factors, MLC transmission, etc.) for 6 MV, 6 FFF, 10 MV, 10 FFF and 15 MV were measured and compared with the published data of the True Beam. Multiple detectors were used in order to obtain a consistent dataset. The measured data has a good consistency with the reference golden beam data. The measured beam quality index for all the beams are in good agreement with the published data. The percentage depth dose at 10 cm depth of all the available photon beams was within the tolerance of the Varian acceptance specification. The dosimetric data shows consistent and comparable results with the published data of other True Beam linear accelerators. The dosimetric data provide us an appreciated perception and consistent among the published data and may be used for future references.
Rocznik
Strony
79--89
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Jahangirnagar University, Savar, Dhaka – 1342, Bangladesh
  • Department of Radiation Oncology, United Hospital, Gulshan, Dhaka – 1212, Bangladesh
  • Department of Radiation Oncology, United Hospital, Gulshan, Dhaka – 1212, Bangladesh
autor
  • Secondary Standard Dosimetry Laboratory, Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, Bangladesh
  • Department of Physics, Jahangirnagar University, Savar, Dhaka – 1342, Bangladesh
Bibliografia
  • [1] Shende R, Gupta G, Patel G, Kumar S. Commissioning of TrueBeam TM Medical Linear Accelerator: Quantitative and Qualitative Dosimetric Analysis and Comparison of Flattening Filter (FF) and Flattening Filter Free (FFF) Beam. Int J Med Phys Clin Eng Radiat Oncol. 2016;5(1):55-69.
  • [2] Das IJ, Cheng CW, Watts RJ, et al. Accelerator beam data commissioning equipment and procedures: Report of the TG–106 of the Therapy Physics Committee of the AAPM. Med Phys. 2008;35(9) 4186-4215.
  • [3] Chalkley A, Heyes G. Evaluation of a Single-Crystal Diamond Detector for Relative Dosimetry Measurements on a CyberKnife. Br J Radiol. 2014;87(1035): 20130768.
  • [4] Dieterich S, Ford E, Pavord D, Zeng J. Practical Radiation Oncology Physics: a Companion to Gunderson & Tepper's Clinical Radiation Oncology. Elsevier, 2016, Page 21-22.
  • [5] Huang Y, Willomitzer C, Zakaria GA, Hartmann GH. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams. Phys Med. 2010;26(3):126-131.
  • [6] Yao W, Farr JB. Determining the optimal dosimetric leaf gap setting for rounded leaf-end multileaf collimator systems by simple test fields. J Appl Clin Med Phys. 2015;16(4):65-77.
  • [7] IAEA. Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. Vienna: International Atomic Energy Agency, Technical Reports Series TRS-398; 2000.
  • [8] Almond PR, Biggs PJ, Coursey BM, et al. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys. 1999;26(9):1847-1870.
  • [9] Wang Y, Easterling SB, Ting JY. Ion recombination corrections of ionization chambers in flattening filter-free photon radiation. J Appl Clin Med Phys. 2012;13(5):262-268.
  • [10] Central axis depth dose data for use in radiotherapy. Br J Radiol Suppl. 1996;25.
  • [11] Installation Product Acceptance for True Beam / True Beam STx version 1.6, Document part number IPA-HT-16-J, Nov 2013
  • [12] Kutcher GJ, Coia L, Gillin M, et al. Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40. Med Phys. 1994;21(4):581-618.
  • [13] IAEA. Dosimetry of Small Static Fields Used in External Beam Radiotherapy. Vienna: International Atomic Energy Agency, Technical Reports Series TRS-483; 2017.
  • [14] Followill DS, Kry SF, Qin L, et al. The Radiological Physics Center's standard dataset for small field size output factors. J Appl Clin Med Phys. 2012;13(5):3962.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a61cff1-ee67-4722-9464-a47affaacebd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.