PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Asymptotic stability of an epidemiological fractional reaction-diffusion model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this article is to study the known susceptible-infectious (SI) epidemic model using fractional order reaction-diffusion fractional partial differential equations [FPDEs] in order to better describe the dynamics of a reaction-diffusion SI with a nonlinear incidence rate describing the infection dynamics of the HIV/AIDS virus. We initially examined the nonnegativity, global existence, and boundedness for solutions of the proposed system. After determining that the proposed model has two steady states, we derived sufficient conditions for the global and local asymptotic stability of the equilibrium of the proposed system and their relationship to basic reproduction in the case of fractional ordinary differential equations and FPDEs by analyzing the eigenvalues and using the appropriately chosen Lyapunov function. Finally, we used numerical examples to illustrate our theoretical results.
Wydawca
Rocznik
Strony
art. no. 20220224
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Laboratory (LAMIS), Abbes Laghrour University Khenchela, Khenchela, Algeria
  • Laboratory (LAMIS), Larbi Tebessi University, Tebessa, Algeria
  • Department of Electrical Engineering, College of Engineering, Taibah University, Yanbu, Saudi Arabia
Bibliografia
  • [1] L. Djebara, R. Douaifia, S. Abdelmalek, and S. Bendoukha, Global and local asymptotic stability of an epidemic reaction-diffusion model with a nonlinear incidence, Math. Meth. Appl. Sci. 45 (2022), 1–25, DOI: https://doi.org/10.1002/mma.8205.
  • [2] L. Djebara, S. Abdelmalek, and S. Bendoukha, Global existence and asymptotic behavior of solutions for some coupled systems via a Lyapunov functional, J. Acta Math. Sci. 39 (2019), no. 6, 1538–1550, DOI: https://doi.org/10.1007/s10473-019-0606-7.
  • [3] H. W. Hethcote, Qualitative analysis for communicable disease models, Math Biosci. 28 (1976), 335–356, DOI: https://doi.org/10.1016/0025-5564(76)90132-2.
  • [4] A. Korobeinikov and G. C. Wake, Lyapunov functions and global stability for SIR, SIRS and SIS epidemiological models, Appl. Math. Lett. 15 (2002), no. 8, 955–961, DOI: https://doi.org/10.1007/s11538-005-9037-9.
  • [5] F. Brauer and P. Van den Driessche, Models for transmission of disease with immigration of infectives, Math. Biosci. 171 (2001), 143–154, DOI: https://doi.org/10.1016/s0025-5564(01)00057-8.
  • [6] M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci. 189 (2004), 75–96, DOI: https://doi.org/10.1016/j.mbs.2004.01.003.
  • [7] V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci. 42 (1978), 43–61, DOI: https://doi.org/10.1016/0025-5564(78)90006-8.
  • [8] J. Li, Y. Yang, Y. Xiao, and S. Liu, A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence, Appl. Anal. Comput. 6 (2016), no. 1, 38–46, DOI: https://doi.org/10.11948/2016004.
  • [9] K. Akdim, A. Zetouni, and M. Zahid, The influence of awareness campaigns on the spread of an infectious disease: a qualitative analysis of a fractional epidemic model, Model. Earth Syst. Environ. 8 (2022), 1311–1319, DOI: https://doi.org/10.1007/s40808-021-01158-9.
  • [10] Z. Lu, Y. Yu, G. Ren, C. Xu, and X. Meng, Global dynamics for a class of reaction-diffusion multigroup SIR epidemic models with time fractional-order derivatives, Nonlinear Anal. Modell. Control 27 (2022), no. 1, 142–162, DOI: https://doi.org/10.15388/namc.2022.27.25192.
  • [11] D. Mansouri, S. Abdelmalek, and S. Bendoukh, On the asymptotic stability of the time-fractional Lengyel-Epstein system, Comput. Math. Appl. 78 (2019), 1415–1430, DOI: https://doi.org/10.48550/arXiv.1809.10544.
  • [12] S. Bendoukha and S. Abdelmalek, The fractional Chua chaotic system: dynamics, synchronization, and application to secure communications, Int. J. Nonlinear Sci. Numer. Simulat. 20 (2019), no. 1, 77–88, DOI: https://doi.org/10.1515/ijnsns-2018-0195.
  • [13] R. Mezhoud, K. Saoudi, A. Zarai, and S. Abdelmalek, Conditions for the local and global asymptotic stability of the time-fractional Degn-Harrison system, IJNSNS 21 (2020), no. 7–8, 749–759, DOI: https://doi.org/10.1515/ijnsns-2019-0159.
  • [14] S. Ullah, M. A. Khan, and M. Farooq, A fractional model for the dynamics of TB virus, Chaos Solutions Fractals 116 (2018), 63–71, DOI: https://doi.org/10.1016/j.chaos.2018.09.001.
  • [15] H. A. A. El-Saka, The fractional-order SIS epidemic model with variable population size, J. Egypt. Math. Soc. 22 (2014), 50–54, DOI: https://doi.org/10.1016/j.joems.2013.06.006.
  • [16] Y. Li, Y. Q. Chenb, and I. Podlubnyc, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability, Comput. Math. Appl. 59 (2010), 1810–1821, DOI: https://doi.org/j.camwa.2009.08.019.
  • [17] A. Nabti and B. Ghanbari, Global stability analysis of a fractional SVEIR epidemic model, Math. Methods Appl. Sci. 44 (July 2021), 1–21, DOI: https://doi.org/10.1002/mma.7285.
  • [18] F. Jarad and T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S. 13 (March 2020), no. 3, 709–722, DOI: https://doi.org/10.3934/dcdss.2020039.
  • [19] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, and Z. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating aprey refuge, J. Appl. Math. Comput. 54 (2017), 435–449, DOI: https://doi.org/10.1007/s12190-016-1017-8.
  • [20] R. Douaifia, S. Abdelmalek, and S. Bendoukha, Asymptotic stability conditions for autonomous time-fractional reaction-diffusion systems, Commun. Nonlinear Sci. Numer. Simulat. 80 (2020), 104982, DOI: https://doi.org/10.1016/j.cnsns.2019.104982.
  • [21] H. A. A. El-Saka, A. A. M. Arafa, and M. I. Gouda, Dynamical analysis of a fractional SIRS model on homogeneous networks, Adv. Difference Equations 2019 (2019), 144, DOI: https://doi.org/10.1186/s13662-019-2079-3.
  • [22] H. Miao, X. Abdurahman, Z. Teng, and C. Kang, Global dynamics of a fractional order HIV model with both virus-to-cell and cell-to-cell transmissions and therapy effect, IAENG Int. J. Appl. Math. 47 (2017), no. 1, 75–81.
  • [23] M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos, and R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simulat. 22 (2015), 650–659, DOI: https://doi.org/10.1016/j.cnsns.2014.10.008.
  • [24] A. Boukhouima, K. Hattaf, El. M. Lotfi, M. Mahrouf, D. F. M. Torres, and N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos Solutions Fractals 140 (2020), 110224, DOI: https://doi.org/10.1016/j.chaos.2020.110224.
  • [25] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Number. Simulat. 19 (2014), 2951–2957, DOI: http://dx.doi.org/10.1016/j.cnsns.2014.01.022.
  • [26] C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems. Commun. Nonlinear Sci. Numer. Simulat. 24 (2015), 75–85, DOI: https://doi.org/10.1016/j.cnsns.2014.12.013.
  • [27] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic, Math. Biosci. 180 (2002), 29–48, DOI: https://doi.org/10.48550/arXiv.1809.10544.
  • [28] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl. 332 (2007), no. 1, 709–726, DOI: https://doi.org/10.1016/j.jmaa.2006.10.040.
  • [29] M. R. Ammi, M. Tahiri, M. Tilioua, A. Zeb, I. Khan, and M. Andualem, Global analysis of a time fractional order spatio temporal SIR model, Sci. Rep. 12 (2022), 5751, DOI: https://doi.org/10.1038/s41598-022-08992-6.
  • [30] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fract. 14 (2002), no. 3, 433–440, DOI: https://doi.org/10.1016/S0960-0779(01)00208-9.
  • [31] R. G. Casten and C. J. Holland, Stability properties of solutions to systems of reaction-diffusion equations, SIAM J. Appl. Math. 33 (1977), 353–364, DOI: https://doi.org/10.1137/0133023.
  • [32] S. Abdelmalek, S. Bendoukha, and B. Rebiai, and On the stability and nonexistence of turing patterns for the generalized Lengyel-Epstein model, Math. Methods Appl. Sci. 40 (2017), no. 18, 6295–6305, DOI: https://doi.org/10.1002/mma.4457.
  • [33] R. P. Sigdel and C. Connell McCluskey, Global stability for an SEI model of infectious disease with immigration, Appl. Math. Comp. 243 (2014), 684–689, DOI: https://doi.org/10.1016/j.amc.2014.06.020.
  • [34] A. Lahrouz, L. Omari, and D. Kiouach, Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model, Nonlinear Anal. Modell. Control 16 (2011), no. 1, 59–76, DOI: https://doi.org/10.15388/NA.16.1.14115.
  • [35] G. Li and W. Wang, Bifurcation analysis of an epidemic model with nonlinear incidence, Appl. Math. Comput. 214 (2009), 411–423, DOI: https://doi.org/10.1016/j.amc.2009.04.012.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a606ba2-4745-4af9-973e-d2a3fb5e47a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.