PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Volumetric wear characteristics as a result of the tribological interaction between the soil with working parts cultivator's and plough's

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is concerned with the possibility of applying modern non-contact methods for assessing the wear as a result of tribological interaction between working bodies and the soil. An original method for wear testing using the test space discretization based on the 3D scanning technology was employed. A localized volumetric wear coefficient was proposed, allowing for wear analysis and improving the accuracy of the Holm-Archard model. The coefficient of local volumetric wear shows the influence of the nominal shape and the slip trajectory of the abrasive particle along the elementary surface on the intensity of wear. At local volumetric wear coefficient > 0.3, this factor determines the intensity of surface wear. Volumetric wear characteristics are the basis for prediction of wear consequences for different materials and techniques of reinforcement of working surfaces, subject to intensive wear in abrasive soil mass. The reliability of the study is confirmed by the comparison with the mass method for wear assessment and the results of the application of the proposed method for different conditions of abrasive wear of operating parts.
Rocznik
Strony
707--718
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Department of Vehicle and Machine Construction and Operation, ul. Oczapowskiego 11, 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Vehicle and Machine Construction and Operation, ul. Oczapowskiego 11, 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Vehicle and Machine Construction and Operation, ul. Oczapowskiego 11, 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Department of Vehicle and Machine Construction and Operation, ul. Oczapowskiego 11, 10-719 Olsztyn, Poland
Bibliografia
  • 1. The Wear of Metals under Unlubricated Conditions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1956; 236 (1206): 397–410, https://doi.org/10.1098/rspa.1956.0144.
  • 2. Archard J F. Contact and Rubbing of Flat Surfaces. Journal of Applied Physics 1953; 24 (8): 981–988, https://doi.org/10.1063/1.1721448. 3. Bayhan Y. Reduction of wear via hardfacing of chisel ploughshare, Tribology International 2006; 39(6): 570–574, https://doi.org/10.1016/j.triboint.2005.06.005.
  • 4. Bhakat A K, Mishra A K, Mishra N S. Characterization of wear and metallurgical properties for development of agricultural grade steel suitable in specific soil conditions. Wear 2007; 263 (1–6 ): 228–233, https://doi.org/10.1016/j.wear.2006.12.006.
  • 5. Białobrzeska B, Kostencki P. Abrasive wear characteristics of selected low-alloy boron steels as measured in both field experiments and laboratory tests. Wear 2015; 328–329: 149–159, https://doi.org/10.1016/j.wear.2015.02.003.
  • 6. Cucinotta F, Scappaticci L, Sfravara F, Morelli F, Mariani F, Varani M, Mattetti M. On the morphology of the abrasive wear on ploughshares by means of 3D scanning. Biosystems Engineering 2019; 179: 117–125, https://doi.org/10.1016/j.biosystemseng.2019.01.006.
  • 7. Er U, Par B. Wear of plowshare components in SAE 950C steel surface hardened by powder boriding. Wear 2006; 261(3): 251–255, https://doi.org/10.1016/j.wear.2005.10.003.
  • 8. Hawryluk M, Ziemba J, Zwierzchowski M, Janik M. Analysis of a forging die wear by 3D reverse scanning combined with SEM and hardness tests. Wear 2021; 476: 203749, https://doi.org/10.1016/j.wear.2021.203749.
  • 9. Hawryluk M, Ziemba J. Application of the 3D reverse scanning method in the analysis of tool wear and forging defects. Measurement 2018; 128: 204–213, https://doi.org/10.1016/j.measurement.2018.06.037.
  • 10. Horvat Z, Filipovic D, Kosutic S, Emert R. Reduction of mouldboard plough share wear by a combination technique of hardfacing. Tribology International 2008; 41(8): 778–782, https://doi.org/10.1016/j.triboint.2008.01.008.
  • 11. Jacobson S, Hogmark S. Tribologi – Friktion, smörjning och nötning. Liber Utbildning AB, Uppsala, Sweden, 1996, ISBN: 9163415321
  • 12. Konat Ł, Jasiński R, Białobrzeska B, Szczepański Ł. Analysis of the static and dynamic properties of wear-resistant Hardox 600 steel in the context of its application in working elements. Materials Science–Poland 2021; 39(1), https://doi.org/10.2478/msp-2021-0007.
  • 13. Konat Ł, Napiórkowski J, Kołakowski K, Resistance to wear as a function of the microstructure and selected mechanical properties of microalloyed steel with boron. Tribologia 2016; 268 (4):101–114, https://doi.org/10.5604/01.3001.0010.6986.
  • 14. Kostencki P, T. Stawicki T. Durability and wear geometry of subsoiler shanks provided with sintered carbide plates. Tribology International 2016; 104: 19–35, https://doi.org/10.1016/j.triboint.2016.08.020.
  • 15. Mattetti M, Molari G, Sereni E. Damage evaluation of driving events for agricultural tractors. Computers and Electronics in Agriculture 2017; 135: 328–337, https://doi.org/10.1016/j.compag.2017.01.018.
  • 16. Meng H C, Ludema K C. Wear models and predictive equations: their form and content. Wear 1995; 181–183 (Part 2): 443–457, https://doi.org/10.1016/0043-1648(95)90158-2.
  • 17. Napiórkowski J, Lemecha M, Ł. Konat Ł. Forecasting the Wear of Operating Parts in an Abrasive Soil Mass Using the Holm-Archard Model. Materials 2019; 12: 2180, https://doi.org/10.3390/ma12132180.
  • 18. Napiórkowski J, Olejniczak K, Konat Ł. Wear Properties of Nitride-Bonded Silicon Carbide under the Action of an Abrasive Soil Mass. Materials 2021; 14(8): 2043, https://doi.org/10.3390/ma14082043.
  • 19. Owsiak Z. Wear of symmetrical wedge-shaped tillage tools. Soil & Tillage Research 1997; 43(3): 295–308, https://doi.org/10.1016/S0167-1987(97)00020-2.
  • 20. Quirke S, Scheffler O, Allen C. An evaluation of the wear behaviour of metallic materials subjected to soil abrasion. Soil & Tillage Research 1988; 11(1): 27–42, https://doi.org/10.1016/0167-1987(88)90029-3.
  • 21. Ranuša M, Gallo J, Vrbka M, Hobza M, Paloušek D, Křupka I, Hartl M. Wear Analysis of Extracted Polyethylene Acetabular Cups Using a 3D Optical Scanner. Tribology Transactions 2017; 60 (3): 437–447, https://doi.org/10.1080/10402004.2016.1176286.
  • 22. Stradomski Z. Mikrostruktura w zagadnieniach zużywania staliw trudnościeralnych. Wydawnictwo Politechniki Częstochowskiej, Częstochowa, Poland, 2010, ISBN: 978-83-7193-468-1.
  • 23. Vrublevskyi O, Napiórkowski J, Gonera J, Tarasiuk W. Numerical wear models for knock-on chisels in real operating conditions. Journal of Tribology 2022; 144 (9), https://doi.org/10.1115/1.4054020.
  • 24. Yazici A. Investigation of the reduction of mouldboard ploughshare wear through hot stamping and hardfacing processes. Turkish Journal of Agriculture and Forestry 2011: 461–468, https://doi.org/10.3906/tar-1105-29.
  • 25. Ziemba J, Hawryluk M, Rychlik M. Application of 3D Scanning as an Indirect Method to Analyze and Eliminate Errors on the Manufactured Yoke-Type Forgings Forged in SMED Device on Modernized Crank Press. Materials 2021; 14 (1): 137, https://doi.org/10.3390/ma14010137.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a5dc44f-e3b7-4c1f-b018-07665d21c2c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.