PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pairing-Friendly Primes for Abelian Varieties

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a method of generating primes r ≡ 1 (mod n), q and a Weil q-number π such that r divides Φn(q) and r divides |A(Fq)|, where A/Fq is an ordinary abelian variety defined over a finite Fq corresponding to π. Such primes can be used for implementing pairing-based cryptographic systems.
Wydawca
Rocznik
Strony
385--400
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
  • Adam Mickiewicz University, Faculty of Mathematics and Computer Science, Umultowska 87, 61-614 Poznań, Poland
Bibliografia
  • [1] Honda T. Isogeny classes of abelian varieties over finite fields. J Math Soc Japan. 1968;20:83–95. Available from: http://doi.org/10.2969/jmsj/02010083.
  • [2] Freeman D, Stevenhagen P, Streng M. Abelian Varieties with Prescribed Embedding Degree. In: ANTS; 2008. p. 60–73. ISBN: 3-540-79455-7, 978-3-540-79455-4.
  • [3] Dryło R. A New Method for Constructing Pairing-friendly Abelian Surfaces. In: Proceedings of the 4th International Conference on Pairing-based Cryptography. Pairing’10. Berlin, Heidelberg: Springer-Verlag; 2010. p. 298–311. Available from: http://dl.acm.org/citation.cfm?id=1948966.1948993.
  • [4] Dryło R. On Constructing Families of Pairing-friendly Elliptic Curves with Variable Discriminant. In: Proceedings of the 12th International Conference on Cryptology in India. INDOCRYPT’11. Berlin, Heidelberg: Springer-Verlag; 2011. p. 310–319. Available from: http://dx.doi.org/10.1007/978-3-642-25578-6_22. doi:10.1007/978-3-642-25578-6_22.
  • [5] Freeman D. Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10. In: ANTS; 2006. p. 452–465. doi:10.1007/11792086_32.
  • [6] Freeman D. A Generalized Brezing-Weng Algorithm for Constructing Pairing-Friendly Ordinary Abelian Varieties. In: Pairing; 2008. p. 146–163. doi:10.1007/978-3-540-85538-5_11.
  • [7] Cohen H. A Course in Computational Algebraic Number Theory. Springer-Verlag; vol. 138, 1996. doi:10.1007/978-3-662-02945-9.
  • [8] Źrałek B. Using partial smoothness of p-1 for factoring polynomials modulo p. Math Comput. 2010; 79(272):2353–2359. Available from: https://doi.org/10.1090/S0025-5718-2010-02377-4.
  • [9] Grzeskowiak M. Algorithms for Relatively Cyclotomic Primes. Fundam Inform. 2013;125(2):161–181. doi:10.3233/FI-2013-858.
  • [10] Bach E, Shallit J. Algorithmic Number Theory, Volume I: Efficient Algorithms. MIT Press; 1996. ISBN: 0-262-02405-5.
  • [11] Huang MDA. Factorization of Polynomials over Finite Fields and Factorization of Primes in Algebraic Number Fields. In: STOC; 1984. p. 175–182.
  • [12] Grześkowiak M. Algorithms for Pairing-Friendly Primes. In: Pairing; 2013. p. 215–228. doi:10.1007/978-3-319-04873-4_13.
  • [13] Borevich, Shafarevich I. Number Theory. Academic Press; 1966. ISBN: 012117851X, 9780121178512.
  • [14] Snaith VP. Groups, rings and Galois theory; 2nd ed. Singapore: World Scientific; 2003. ISBN: 978-981-238-576-5, 978-981-238-600-7.
  • [15] Janusz GJ. Algebraic Number Fields. American Mathematical Society, 2nd edition; 2005. ISBN: 978-0-8218-0429-2.
  • [16] Cox D. Primes of the Form x2 + ny2. Wiley & Sons; 1989.
  • [17] Shimura G. Abelian Varietes with Complex Multiplication and Modular Functions. New Jersey: Princeton University Press; 1998. ISBN-10: 0691016569, 13: 978-0691016566.
  • [18] Kappe L, B Warren G. An Elementary Test for the Galois Group of a Quartic Polynomial. American Mathematical Monthly, 1989;96(2):133–137. doi:10.2307/2323198.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a5da030-e90b-4aeb-ab56-2e90042e4d64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.