PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coatings manufactured using magnetron sputtering technology to protect against infrared radiation for use in firefighter helmets

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to test the usefulness of magnetron sputtering technology to produce coatings on selected elements of a firefighter’s helmet to protect against infrared radiation (PN-EN 171 standard). The scope of research includes testing the deposition produced via magnetron sputtering of metallic and ceramic coatings on plastics, which are used to manufacture the components comprising the personal protection equipment used by firefighters. The UV-VIS, NIR used to research the permeation coefficients and reflections for light and infrared light and the emission spectrometry with ICP-AES used for the quantitative analysis of elements in metallic and ceramic coatings. Microstructural and micro-analytical testing of the coatings were performed using scanning electron microscopy (SEM). Measurements of the chemical compositions were conducted using energy-dispersive X-ray spectroscopy (EDS). The hardnesss of the coatings were tested using a indentation method, and the coating thicknesses were tested using a ellipsometry method.
Rocznik
Strony
50--58
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland
autor
  • Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland
  • Institute of Security Technologies “MORATEX”, 3 M. Sklodowskiej-Curie Str., 90-505 Lodz, Poland
autor
  • Central Institute for Labour Protection – National Research Institute, 48 Wierzbowa Str., 90-133 Lodz, Poland
Bibliografia
  • 1. Standards Association of Poland. (2006). Polish standard: Personal eye protection equipment. Face covers and viewfinders used in firemen helmets of high effectiveness in the area of industrial safety, used by the firemen, medical emergency teamsand rescue services. PN-EN 14458:2006.
  • 2. Standards Association of Poland. (2005). Polish standard: Personal eye protection. Filters protecting against infrared radiation. PN-EN 171:2005.
  • 3. Dietzel, Y., Przyborowski, W., Nocke, G., Offermann, P., Hollstein, F. & Meinhardt, J. (2000). Investigation of PVD arc coatings on polyamide fabrics. Surf. Coat. Technol. 135, 75-81. DOI: 10.1016/S0257-8972(00)00917-8.
  • 4. Wasa, K. & Hayakawa, S. (1992). Handbook of sputter deposition technology. Noyes, USA: Park Ridge.
  • 5. Dobrzański, L.A. & Dobrzańska-Danikiewicz, A.D. (2011). Obróbka powierzchni materiałów inżynierskich (89-136). Open Access Library. International OCSCO World Press. http://www.openaccesslibrary.com/index.php?id=81
  • 6. Kawate, M., Hashimoto, A.K. & Suzuki, T. (2003). Oxidation resistance of Cr1− x Al x N and Ti1− x Al x N films. Surf. Coat. Technol. 165, 163-167. DOI: http://dx.doi.org/10.1016/S0257-8972(02)00473-5.
  • 7. Ghrib, T., Tlili, B., Nouveau, C., Benlatreche, Y., Lambertin, M., Yacoubi, N. & Ennasri, M. (2009). Experimental investigation of the mechanical micro structural and thermal properties of thin CrAIN layers deposited by PVD technique for various aluminum percentages. Phys. Proce. 2, 1327-1336. DOI: 10.1016/j.phpro.2009.11.099.
  • 8. Bingyao Deng, Xiong Yan, Qufu Wei. & Weidong Gao. (2007). AFM characterization of nonwoven material functionalized by ZnO sputter coating. Mater. Character. 58, 854-858. DOI: 10.1016/j.matchar.2006.08.002.
  • 9. Qufu Wei, Qiuxiang Xu, Yibing Cai, Weidong Gao. & Congzhi Bo. (2009). Characterization of polymer nanofibers coated by reactive sputtering of zinc. J. Mater. Proces. Technol. 209, 2028-2032. DOI: 10.1016/j.jmatprotec.2008.04.068.
  • 10. Barshilia, H.C., Jain, A. & Rajam, K.S. (2003). Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum 72, 241-248. DOI: 10.1016/j. vacuum.2003.08.003.
  • 11. Barshilia, H.C., Prakash, M.S., Jain, A. & Rajam, K.S. (2005). Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films. Vacuum 77, 169. DOI: 10.1016/j.vacuum.2004.08.020.
  • 12. Grips, V.K., Selvi, V.E., Barshilia, H.C. & Rajam, K.S. (2006). Effect of electroless nickel interlayer on the electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive dc magnetron sputtering. Electrochem. Acta 51, 3461. DOI: 10.1016/j.electacta.2005.09.042.
  • 13. Barshilia, H.C. & Rajam, K.S. (2004). Structure and properties of reactive DC magnetron sputtered TiN/NbN hard superlattices. Surf. Coat. Technol. 183, 174-183. DOI: 10.1016/j. surfcoat.2003.09.070.
  • 14. Barshilia, H.C., Prakash, M.S., Poojari, A. & Rajam, K.S. (2004). Corrosion behavior of nanolayered TiN/NbN multilayer coatings prepared by reactive direct current magnetron sputtering process. Thin Solid Films 460, 133-142. DOI: 10.1016/j. tsf.2004.01.096.
  • 15. Barshilia, H.C., Rajam, K.S. & Sridhara Rao, D.V. (2006). Characterization of low temperature deposited nanolayered TiN/NbN multilayer coatings by cross-sectional transmission electron microscopy. Surf. Coat. Technol. 200, 4586-4593. DOI: 10.1016/j.surfcoat.2005.04.016.
  • 16. Barshilia, H.C., Rajam, K.S., Jain, A., Gopinadhan, K. & Chaudhary, S. (2006). A comparative study on the structure and properties of nanolayered TiN/NbN and TiAlN/TiN multilayer coatings prepared by reactive direct current magnetron sputtering. Thin Solid Films 503, 158-166. DOI: 10.1016/j. tsf.2005.12.074.
  • 17. Tlili, B., Nouveau, C., Walock, M.J., Nasri, M. & Ghrib, T. (2012). Effect of layer thickness on thermal properties of multilayer thin films produced by PVD. Vacuum 86, 1048-1056. DOI: 10.1016/j.vacuum.2011.09.008.
  • 18. Lewis, D.B., Wadsworth, I., Münz, W.D., Kuzel Jr., R. & Valvoda, V. (1999). Structure and stress of TiAlN/CrN superlattice coatings as a function of CrN layer thickness. Surf. Coat. Technol. 116-119, 284-291. DOI: 10.1016/S0257-8972(99)00132-2.
  • 19. Panjan, M., Šturm, S., Panjan, P. & Čekada, M. (2007). TEM investigation of TiAlN/CrN multilayer coatings prepared by magnetron sputtering. Surf. Coat. Technol. 202, 815-819. DOI: 10.1016/j.surfcoat.2007.05.084.
  • 20. Dubas, S.T., Limsavarn, L., Iamsamai, C. & Potiyaraj, P. (2006). Assembly of polyelectrolyte multilayers on nylon fibers. J. Appl. Polym. Sci. 101, 3286-3290. DOI: 10.1002/app.23826.
  • 21. Cho, K.H., Park, J.E., Osaka, T. & Park, S.G. (2005). The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51, 956-960. DOI: 10.1016/j.electacta.2005.04.071.
  • 22. Qufu Wei, Xueliang Xiao, Dayin Hou, Heng Ye & Fenglin Huang. (2008). Characterization of nonwoven material functionalized by sputter coating of copper. Surf. Coat. Technol. 202, 2535-2539. DOI: 10.1016/j.surfcoat.2007.09.022.
  • 23. Chiba, K. & Futagami, A. (2008). Enhanced bending stability of carbon-nanotube-reinforced indium tin oxide films on flexible plastic substrates. Appl. Phys. Lett. 93, 013114. DOI: http://dx.doi.org/10.1063/1.2951596
  • 24. Sim, E., Kim, H., Park, J. & Lee, M. (2009). Highly enhanced mechanical stability of indium tin oxide film with a thin Al buffer layer deposited on plastic substrate. Surf. & Coat. Technol. 204, 309-312. DOI: 10.1016/j.surfcoat.2009.07.028.
  • 25. Lewis, J., Grego, S., Chalamala, B., Vick, E. & Temple, D. (2004). Highly flexible transparent electrodes for organic lightemitting diode-based displays. Appl. Phys. Lett. 85, 3450-3452. DOI: http://dx.doi.org/10.1063/1.1806559.
  • 26. Moezzi, A., McDonagh, A.M. & Cortie, M.B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chem. Engine. J. 185-186, 1-22. DOI: 10.1016/j.cej.2012.01.076.
  • 27. Misiano, C., Simonetti, E., Cerolini, P. & Staffetti, F. (1991). Proc. 33 th society of vacuum coaters annual conference, SVC, pp. 105.
  • 28. Tong, T.W., Swathi, P.S. & Cunnington Jr. G. (1989). Reduction of Radiative Heat Transfer in Thermal Insulations by Use of Dielectric Coated Fibers. Int. Comm. Heat Mass Transf. 16, 851-856.
  • 29. Hass, D.D., Prasad, B.D., Glass, D.E. & Wiedemanm, K.E. (1997). NASA Contractor Report NASA-97-cr201733, NASA Langly.
  • 30. Wolański, R. (2008). PhD dissertation. Technology and materials for preparation of thermal protection against infrared and microwave radiation. University of Science and Technology. Materials and Ceramics Engineering Department, Krakow, Poland.
  • 31. Leja, E., Precht, W. & Wolański, R. (2007). Methods of deposition of coatings on personal protection equipment of rescue services: Development trends in the rescue technologies and technical equipment. Conference materials. September 2007 (pp. 62-70). Junior Firemen Academy of State Fire Department in Krakow, Poland.
  • 32. Gralewicz, G., Owczarek, G. & Kubrak, J. (2012). Interference filters protect against harmful infrared radiation on hot workplaces. Occup. Heal. Saf. 5, 12-15.
  • 33. Kim, S.K., Kim, T.H., Whole, J. & Rie, K.T. (2000). TiCN coatings on aluminum alloy formed by MO-PACVD. Surf. Coat. Technol. 131, 121-126. DOI: 10.1016/S0257-8972(00)00831-8.
  • 34. Rainforth, W.M., Leonard, A.J., Perrin, C., Bedolla- Jacuinde, A., Wang, Y., Jones, H. & Luo, Q. (2002). High resolution observations of friction-induced oxide and its interaction with the worn surface. Tribol. Int. 35, 731-748. DOI: http://dx.doi.org/10.1016/S0301-679X(02)00040-3
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a5ce46c-9712-4d8c-81bd-42f9bf8b1794
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.