PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow Adaptive Simulation of Dynamic Water Body Based on River Velocity Field

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Adaptacyjna symulacja przepływu wody w rzece – rozkład prędkości wody
Języki publikacji
EN
Abstrakty
EN
Simulation of natural water in river flow is a key issue in implementation of Digital Basin. This paper presents a method of water flow visualization which can adapt for the channel of the river based on the velocity field. Aiming at simulating large area river flow, first, Level of details(Lods) are constructed for river velocity fields according to the spatial relationship between view point and the targets. Second, it calculates the velocity fields of steady water flow in real-time using a novel quick Poisson-disk boundary sampling method, and then, Simplified velocity fields are adopted for driving and restrict the sprite textures so as to make them meet Poisson-disk distribution along the river channel. Finally, it blends and render sprite textures and gets real water flow effects. This method uses GLSL(OpenGL Shading Language)shaders to render the dynamic water flow, the shaders use GPU programmable rendering pipeline for graphics calculations, it reduces the real-time computation time of CPU and improves the overall efficiency of the algorithm. An experiment is carried out over Three Gorges Reservoir basin, it suggests that the method achieved a promising results, and the proposed method can be effectively used in simulation of large scale dynamic flowing water.
PL
W artykule przedstawiono metodę wizualizacji przepływu wody w korycie rzecznym, biorący pod uwagę rozkład prędkości wody na dużym obszarze. W pierwszym kroku określony został stopień ilości detali w badanym obszarze, następnie szczegółowo obliczono pola określonych prędkości w oparciu o rozkład Poisson’a, po czym zaadaptowano uproszczone pola prędkości do opisu tzw. sprite’ów. Finalnie, na podstawie wspomnianych analiz otrzymano rzeczywisty obraz przepływu cieczy. Przeprowadzono badania weryfikacyjne proponowanej metody symulacji przepływu.
Rocznik
Strony
221--227
Opis fizyczny
Bibliogr. 27 poz., il., schem., tab., wykr.
Twórcy
autor
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • University of Chinese Academy of Sciences, Beijing, China
autor
  • China Institute of Water Resources and Hydropower Research, Beijing, China
Bibliografia
  • [1] BRIDSON R., HOURIHAM J., NORDENSTAM M.. Curl-noise for procedural fluid flow. ACM Transactions on Graphics. 2007.
  • [2] Cani, M.-P. and Desbrun, M. 1997. Animation of deformable models using implicit surfaces. IEEE Transactions on Visualization and Computer Graphics. 3(1997), No. 1, 39–50.
  • [3] CHEN, J., AND LOBO, N.. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Computer Graphics and Image Processing 57(1994), 107–116.
  • [4] CHEN, S., JOHNSON, D., AND RAAD, P.. Velocity boundary conditions for the simulation of free surface fluid flow. J. Comp. Phys. 116(1995), 262–276.
  • [5] CHEN, J., LOBO, N.,Charles H.. Real-Time Fluid Simulation in a Dynamic Virtual Environment. IEEE Computer Graphics and Applications.17(1997), No. 3, 52-61
  • [6] CHENNEY 2004]CHENNEY S., Flow tiles. In Symposium on Computer Animation (2004), 233–242.
  • [7] D.Enright, S.Marschner, and R.Fedkiw, Animation and Rendering of Complex Water Surfaces. ACM Transactions on Graphics (Proceedings of SIGGRAPH), 2002, 736-744.
  • [8] Desbrun, M. and Gascuel, M.-P.. Animating soft substances with implicit surfaces. In the Proceedings of SIGGRAPH 95.1995, 287–290.
  • [9] Desbrun, M. and Cani, M.-P.. Smoothed particles: A new paradigm for animating highly deformable bodies. In Computer Animation and Simulation 1996. 61–76.
  • [10] Dunbar D. & G.Humphreys. A spatial data structure for fast poisson-disk sample generation. ACM Transactions on Graphics, 25(2006), No. 3, 503–508.
  • [11] Foster, Nick, and Dimitri Metaxas. Realistic Animation of Liquids, Graphics Models and Image Processing. 58(1996), No. 5, 471-483.
  • [12] Wolfram von Funck , Holger Theisel , Hans-Peter Seidel. divergence-free velocity fields for shape deformation. ACM Transactions on Graphics-TOG, 25(2006), No. 3, 1118-1125.
  • [13] Kass, Michael, and Gavin Miller. Rapid, Stable, Fluid Dynamics for Computer Graphics. Siggraph.24(1990), No. 4, 49-55.
  • [14] Kawai, M., Hirota, K., Kuroyanagi, S., "Development of a realtime fluid simulator for an interactive virtual environment: Improvement of density feedback in SPH", Advanced Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME International Conference on, 14(2009), 1701 - 1706.
  • [15] LAMORLETTE, A., AND FOSTER, N. 2002. Structural modeling of flames for a production environment. In Proc. ACMSIGGRAPH, 729–735.
  • [16] M¨uller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In the ACM SIGGRAPH 2003 Symposium on Computer Animation. 2003, 154–159.
  • [17] PERLIN, K.. An image synthesizer. In Proc. ACM SIGGRAPH, 1985, 287–296.
  • [18] PATEL, M., AND TAYLOR, N. 2005. Simple divergence-free fields for artistic simulation. journal of graphics tools. 10(2005), No. 4, 49–60.
  • [19] Premoˇze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle-based simulation of fluids. Computer Graphics Forum 22, 3 (Sept.), 401–410.
  • [20] Robert Bridson, Ronald Fedkiw, and Matthias Muller-Fischer. Fluid simulation: SIGGRAPH 2006 course notes. In SIGGRAPH’06: ACM SIGGRAPH 2006.Courses, New York, NY, USA. ACM Press.(2006), 1-87.
  • [21] Stam, Jos. Stable Fluids. Proceedings of Siggraph 1999. New York: ACM Siggraph, 1999, 121-127.
  • [22] Stora, D., Agliati, P.-O., Cani, M.-P., Neyret, F., and Gascuel, J.-D. 1999. Animating lava flows. In Graphics Interface 99(1999), 203–210.
  • [23] Terzopoulos, D., Platt, J., and Fleischer, K.. Heating and melting deformable models (from goop to glop). In Graphics Interface 1989. 219–226.
  • [24] Tonnesen D., “Modeling Liquids and Solids Using Thermal Particles,” Proc. Graphics Interface, Canadian Information Processing Soc., Toronto, 1991, 255-262.
  • [25] Qizhi Yu,Fabrice Neyret, Eric Bruneton. Spectrum-preserving texture advection for animated fluids: report of INRIA. INRIA, 2009.
  • [26]Qiuwen Zhang, Cheng Wang and Ryosuke Shibasaki.Distributed Modeling of Hydrologic System Based on Digital River Basin. Environmental Informatics Archives, 3 (2005), 92-97.
  • [27] Zhu, Y. and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24(2005),No. 3, 965–972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a5aa8d5-6d0e-44f9-b337-9ca84426289a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.