PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Destructive Mechanisms Occurring in the Surface Layer of Forging Tools Used in Hot Forging Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the work was presented the results of studies concerns on the destructive mechanisms for forging tools used in the wheel forging process as well the laboratory results obtained on a specially constructed test items for testing abrasive wear and thermal fatigue. The research results of the forging tools shown that the dominant destructive mechanisms are thermal fatigue occurring in the initial the exploitation stage and abrasive wear, which occurs later, and is intensified effects of thermo-mechanical fatigue and oxidation process. In order to better analysis of phenomena associated with destructive mechanisms, the authors built a special test stands allow for a more complete analysis of each of the mechanisms separately under laboratory conditions, which correspond to the industrial forging processes. A comprehensive analysis of the forging tools confirmed by laboratory tests, showed the interaction between the thermal fatigue and abrasive wear, combined with the oxidation process. The obtained results showed that the process of oxidation and thermal fatigue, very often occur together with the mechanism of abrasive wear, creating a synergy effect. This causing the acceleration, the most visible and easily measurable process of abrasive wear.
Twórcy
autor
  • Wroclaw University of Science and Technology, Department of Metal Forming and Metrology, 5 Lukasiewicza Str., 50-371 Wrocław, Poland
  • Wroclaw University of Science and Technology, Department of Metal Forming and Metrology, 5 Lukasiewicza Str., 50-371 Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, Department of Metal Forming and Metrology, 5 Lukasiewicza Str., 50-371 Wrocław, Poland
Bibliografia
  • [1] T. Altan, Cold and hot forging fundamentals and application, ASM Internation, Ohio (2005).
  • [2] M. Hawryluk, Archives of Civil and Mechanical Engineering 16, 845-866 (2016). http://dx.DOI:0.1016/j.acme.2016.06.001
  • [3] B-A. Behrens, A. Bouguecha, Ch. Buse, K. Wölki, A. Santangelo, Archives of Civil and Mechanical Engineering 16 (4), 724-733 (2016).
  • [4] M. Hawryluk, J. Jakubik, Engineering Failure Analysis 59, 396-409 (2016). http://dx.doi:10.1016/j.engfailanal.2015.11.008
  • [5] O. Barrau, C. Boher, C. Vergne, F. Rezai-Aria, Investigation of Friction and Wear Mechanism of Hot Forging Tool Steels, 6th Int. Tooling Conference, Karlstadt (2002).
  • [6] A. Baumel, T. Seeger, Material Data for Cyclic Loading, Suplement 1, Marterials Science Monographs, 61, Elsevier Science Publishers, Amsterdam (1990).
  • [7] L. Blunt, K. Stout, Three Dimensional Surface Topography, Butterworth-Heinemann (2000).
  • [8] Ch. Choi, A. Groseclose, T. Altan, Journal of Materials Processing Technology 212 (8), 1742-1752 (2012).
  • [9] Ł. Rauch, A. Chmura, Z. Gronostajski, S. Polak, M. Pietrzyk, Archives of Civil and Mechanical Engineering 16 (3), 437-447 (2016).
  • [10] M. Hawryluk, Metody analizy oraz zwiększania trwałości narzędzi kuźniczych stosowanych w procesach kucia matrycowego na gorąco, Monograficzna seria wydawnicza Problemy Eksploatacji i Budowy Maszyn, ISBN 978-83-7789-410-1, Wyd. Naukowe IT-PIB, Radom (2016).
  • [11] D. H. Kima, H. C. Leeb, B. M. Kimc, K. H. Kimd, Journal of Materials Processing Technology 212, 1742-1752 (2012).
  • [12] A. Taylan, N. Gracious, S. Gangshu. Asm metals handbook 14, 337-338 (2005).
  • [13] J. F. Archard, Journal of Applied Physics 24, 981-988 (1953).
  • [14] R. G. Bayer, Mechanical Wear Fundamentals and Testing, Marcel Dekker Inc., New York (2004).
  • [15] A. Katunin, Archives of Civil and Mechanical Engineering 11 (2), 333-342 (2011).
  • [16] P. Anders, S. Hogmark, J. Bergström, International Journal of Fatigue 10, 1095-1107 (2004).
  • [17] htt p://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.510.2263&rep=rep1&type=pdf [dostęp 25 stycznia 2018].
  • [18] A. Weroński, Zmęczenie cieplne metali, Wydawnictwa Naukowo-Techniczne, Warszawa (1983).
  • [19] G. A. Berti, M. Monti, Fatigue & Fracture of Engineering Materials&Structures 28 (11), 1025-1034 (2005).
  • [20] Y. Biriol., Ironmaking and Steelmaking 37, 41-46 (2010).
  • [21] A. Grüning, M. Lebsanft, B. Scholtes, Materials Science&Engineering 527 (7-8), 1979-1985 (2010).
  • [22] Z. Gronostajski, M. Kaszuba, S. Polak, M. Zwierzchowski, A. Niechajowicz, M. Hawryluk, Microstructure and Processing 657, 147-160 (2016).
  • [23] K. Lange, L. Cser, M. Geiger, J. A. G. Kals, Journal of Engineering Manufacture 207 (11), 223-239 (1993).
  • [24] L. Lavtar, T. Muhic, G. Kugler, M. Tercelj, Engineering Failure Analysis 18 (10), 1143-1152 (2011).
  • [25] J. H. Kang, I. W. Park, J. S. Jae, S. S. Kang, Journal of Materials Processing Technology 96 (1), 53-58 (1999).
  • [26] Z. Gronostajski, M. Hawryluk, J. Krawczyk, M. Marciniak, Maintenance and Reliability 15 (2), 129-133 (2013).
  • [27] http://www.machinerylubrication.com/Read/526 [dostęp 25 września 2016].
  • [28] http://www.tribologia.eu/ptt/l50l/l50ls.htm [dostęp 30 marca 2013].
  • [29] L. Guobin, W. Jianjun, Journal of Materials Processing Technology 100, 63-66 (2000).
  • [30] M. Hawryluk, M. Marciniak, G. Misiun, Maintenance and Reliability 16 (4), 600-607 (2015).
Uwagi
EN
1. The research has been financed by the National Centre of Research and Development (NCBiR); project no. POIG.01.03.01-02-063/12
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a59d3f1-8baf-42d0-86c7-00c504c57ed3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.