PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The structural changes of lignin at different stages of growth of Napier grass

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the lignin composition and structure during Napier grass growth. Napier grass showed an increase in lignin, xylan, glucan content and a decrease in acetone extractives and ash content with its growth, while the content of cellulose and holocellulose reached the highest value after four months growth. In addition, milled-wood lignins (MWL) isolated from Napier grass were characterized with 2D-NMR and Py-GC-MS. The results obtained showed that GSH-type substructures were included in Napier grass lignin, whereas the S-G ratio decreased and the abundance of H-substructures increased during lignification. H-units were deposited at the earlier stages, whereas Napier grass was enriched in G-lignin during the late lignification, and S-units were reduced at the final stage. The differences in deposition of lignin units influenced the distribution of the different linkages of lignin units during Napier grass growth. All lignin samples showed the most abundant β-O-4', β-β' resinol linkages, whereas the data obtained by 2D-NMR indicated the similar development in GSH-type substructures with by Py-GC-MS during all stages of lignification.
Słowa kluczowe
Rocznik
Strony
37--45
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Hohai University, Nanjing, China; Kunming University of Science and Technology, Kunming, China
  • Qilu University of Technology, Jinan, China
Bibliografia
  • Abdulkhani A., Karimi A., Mirshokraie A., Hamzeh Y., Marlin N., Mortha G. [2010]: Isolation and chemical structure characterization of enzymatic lignin from Populus deltoides wood. Journal of Applied Polymer Science 118 [1]: 469-479
  • Ashori A. [2006]: Nonwood fibers a potential source of raw material in papermaking. Polymer-Plastics Technology and Engineering 45 [10]: 1133-1136
  • Barsberg S., Matousek P., Towrie M., Jørgensen H., Felby C. [2006]: Lignin radicals in the plant cell wall probed by kerr-gated resonance raman spectroscopy. Biophysical Journal 90 [8]: 2978-2986
  • Basso V., Machado J.C., Lédo F.J. da S., Carneiro J. da C., Fontana R.C., Dillon A.J.P., Camassola M. [2014]: Different elephant grass (Pennisetum purpureum) accessions as substrates for enzyme production for the hydrolysis of lignocellulosic materials. Biomass & Bioenergy 71: 155-161
  • Björkman A. [1956]: Studies on finely divided wood. Part I. Extraction of lignin with neutral solvents. Svensk Papperstidn 59 [13]: 477-485
  • Blumenkrantz N., Asboe-Hansen G. [1973]: New method for quantitative determination of uronic acids. Analytical Biochemistry 54 [2]: 484-489
  • Buxton D.R., Russell J.R. [1988]: Lignin constituents and cell-wall digestibility of grass and legume stems. Crop Science 28: 553-558
  • Chen L., Wang X., Yang H., Lu Q., Li D., Yang Q., Chen, H. [2015]: Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS. Journal of Analytical and Applied Pyrolysis 113: 499-507
  • Devin T., Khanal S.K. [2015]: Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential. Bioresource Technology 188: 103-108
  • Gang D.R., Costa M.A., Fujita M., Dinkova-Kostova A.T., Wang H.-B., Burlat V., Martin W., Sarkanen S., Davin L.B., Lewis N.G. [1999]: Regiochemical control of monolignol radical coupling: A new paradigm for lignin and lignan biosynthesis. Chemical Biology 6 [3]: 143-151
  • Gençer A., Şahin M. [2015]: Identifying the conditions required for the NaOH method for producing pulp and paper from sorghum grown in Turkey. BioResources 10 [2]: 2850-2858
  • Grabber J.H. [2005]: How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science 45 [3]: 820-831.
  • Guerriero G., Hausman J.-F., Strauss J., Ertan H., Siddiqui K.S. [2016]: Lignocellulosic biomass: Biosynthesis, degradation, and industrial utilization. Engineering. Life Science 16: 1-16
  • Holopainen-Mantila U., Marjamaa K., Merali Z., Käsper A., de Bot P., Jääskeläinen A.-S., Waldron K., Kruus K., Tamminen T. [2013]: Impact of hydrothermal pretreatment to chemical composition, enzymatic digestibility and spatial distribution of cell wall polymers. Bioresource Technology 138 [6]: 156-162
  • Jiao Y., Xu X., Liu M., Xu C., Luo W., Song T., Du H., Kiely G. [2016]: Effects of Napier grass management on soil hydrologic functions in a karst landscape, southwestern China. Soil & Tillage Research 157: 83-92
  • Laskar D.D., Ke J., Zen J., Gao X., Chen S. [2012]: Py-GC/MS as a powerful and rapid tool for determining lignin compositional and structural changes in biological processes. Current Analytical Chemistry 9 [3]: 335-351
  • Lee Y., Rubio M.C., Alassimone J., Geldner, N.A. [2013]: Mechanism for localized lignin deposition in the Endodermis. Cell 153 [2]: 402-412
  • Lourenço A., Rencoret J., Chemetova C., Gominho J., Gutiérrez A., Pereira H., del Río J.C. [2015]. Isolation and structural characterization of lignin from cardoon (Cynara cardunculus L.) stalks. Bioenergy Research 8: 1946-1955
  • Manoj K., Campbell L., Turner, S. [2016]: Secondary cell walls: biosynthesis and manipulation. Journal of Experimental Botany 67: 515-531
  • Martínez Á.T., Rencoret J., Marques G., Gutiérrez A., Ibarra D., Jiménez-Barbero J., del Río J.C. [2008]: Monolignol acylation and lignin structure in some nonwoody plants: A 2D NMR study. Phytochemistry 69 [16]: 2831-2843
  • Mazumder B.B., Nakgawa-Izumi A., Kuroda K., Ohtani Y., Sameshima K. [2005]: Evaluation of harvesting time effects on kenaf bast lignin by pyrolysis-gas chromatography. Industrial Crops and Products 21 [1]: 17-24
  • Nadji H., Diouf P.N., Benaboura A., Bedard Y., Riedl B., Stevanovic T. [2009]: Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresource Technology 100: 3585-3592
  • Ralph J., Lundquist K., Brunow G., Lu F., Kim H., Schatz P.F., Marita J.M., Hatfield R.D., Ralph S.A., Christensen J.H. [2004]: Lignins: natural polymers from oxidative coupling of 4-hydroxyphenylpropanoids. Phytochemistry Reviews 3: 29-60
  • Ralph J., Hatfield R.D. [1991]: Pyrolysis-GC-MS characterization of forage materials. Journal of Agricultural and Food Chemistry 39 [8]: 1426-1437
  • Rencoret J., Gutiérrez A., del Río J.C. [2007]: Lipid and lignin composition of woods from different eucalypt species. Holzforschung 61: 165-174
  • Rencoret J., Gutiérrez A., Nieto L., Jiménez-Barbero J., Faulds C.B., Kim H., Ralph J., Martínez Á.T., del Río J.C. [2011]: Lignin composition and structure in young versus adult eucalyptus globulus plants. Plant Physiology 155: 667-682
  • Rodrigues J, Meier D., Faix O., Pereira H. [1999]: Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. Journal of Analytical and Applied Pyrolysis 48 [2]: 121-128
  • Yuree L., Rubio M.C., Alassimone J., Geldner N. [2013]: A mechanism for localized lignin deposition in the endodermis. Cell 153 [2]: 402-412
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a56dfc1-5cd4-43db-9e16-99fe7d7324b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.