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THE STRUCTURAL CHANGES OF LIGNIN
AT DIFFERENT STAGES OF GROWTH OF NAPIER 
GRASS 

The aim of  this  study  was  to  investigate  the  lignin  composition  and  structure
during Napier grass growth.  Napier grass showed an increase in lignin, xylan,
glucan content and a decrease in acetone extractives and ash content with its
growth, while the content of cellulose and holocellulose reached the highest value
after four months growth. In addition, milled-wood lignins (MWL) isolated from
Napier  grass  were  characterized  with  2D-NMR  and  Py-GC-MS.  The  results
obtained  showed  that  GSH-type  substructures  were  included  in  Napier  grass
lignin, whereas the S-G ratio decreased and the abundance of H-substructures
increased  during  lignification.  H-units  were  deposited  at  the  earlier  stages,
whereas Napier grass was enriched in G-lignin during the late lignification, and
S-units  were reduced at the final stage. The differences in deposition of lignin
units  influenced the distribution of the different linkages of lignin units during
Napier grass growth. All lignin samples showed the most  abundant  β-O-4',  β-β'
resinol  linkages,  whereas  the  data obtained  by 2D-NMR indicated the  similar
development in  GSH-type substructures with by Py-GC-MS during all stages of
lignification.
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Introduction 

Lignin is the main component in secondary cell walls. It exists in wood tissue
and hardens the cell wall through the formation of a network. Lignin is mainly
located  between  cellulose  fibres,  playing  a  role  in  protecting  plants  against
pressure.  Woody  plants  contain  25%  of  lignin,  which  is  the  second  most
abundant organic matter in the world. The content and composition of lignin in
plants are different varying with plant  species, cell type, cell layer, and growth
conditions [Buxton and Russell 1988; Manoj et al. 2016]. 

Lignin is a complex polymer synthesized mainly by the coupling of aromatic
alcohols (p-coumaryl, coniferyl alcohol and sinapyl alcohol). These monolignols
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give rise to three types of lignin units by polymerization called p-hydroxyphenyl
[H],  guaiacyl  (G), and syringyl  (S) units,  respectively.  Gymnosperms contain
almost exclusively G type lignin and dicotyledonous plants, mainly contain G-S
type lignin while monocotyledon plants contain G-S-H type lignin [Martínez et
al. 2008; Guerriero et al. 2016]. The lignin monomers are dehydrogenated under
the action of  peroxidase/H2O2 or  laccase/O2 formed in the cell  wall,  forming
phenolic free radicals and their  resonance forms. These radicals are combined
with each other, or added by an H2O or a lignin monomer to condense a dimer.
These dimers are then condensed again and again with H2O or lignin monomer
by free radical  coupling mechanisms generating  a series  of linkages to form
a complex polymer. Lignin was hence deposited at different stages of xylem cell
differentiation through polymerization of  monolignols. Lignin composition and
structure will be changing in timing of deposition during lignification [Gang et
al. 1999; Ralph et al. 2004; Barsberg et al. 2006].

Napier grass (Pennisetum purpureum) is an important perennial herbaceous
plant in (sub)tropical geographies of the world and it has gained an increasing
interest in several applications including papermaking, bioenergy, and ecology.
Lignin content in Napier grass was slightly lower than that of reed (21%),  rice
straw (22%), wheat straw (23%), but higher than sorghum stalk (13%) [Gençer
and Şahin 2015]. Due to the high calorific value, biomass productivity, a number
of studies on Napier grass have already been carried out in many fields [Ashori
2006;  Nadji et al. 2009; Basso et al. 2014;  Devin and Khanal 2015;  Jiao et al.
2016].  It  has  been  found lignin composition  and structure  greatly affects  its
reactions  [Grabber  2005;  Holopainen-Mantila  et  al. 2013]. Therefore,  it  is
important to  elucidate the lignin composition and structure of the  Napier grass
by a combination of 2D-NMR and Py-GC-MS over its natural course of growth
for pulp, chemical, or biofuel production in this study. 

Materials and methods

Samples

Napier grass samples were collected at different stages of growth corresponding
to two, four , and eight months, from an experimental field in Kunming, Yunnan
Province. The stalks were cut into small piece and thendried in an oven at 60°C
for  15 h,  and ground to pass  through a 1 mm sieve.  The powders were then
Soxhlet-extracted with acetone to remove the extracts. The sample was dried in
an oven at 60°C for 15 h and then stored in a vacuum dryer.

Chemical composition

The chemical composition of  Napier grass  was determined: ash (TAPPI T211
om-02), extractives (TAPPI T204 cm-07); lignin (klason lignin and acid-soluble
lignin) (TAPPI T222 om-11, UM 205 om-83). The  carbohydrate analysis  was
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performed on a Dionex ICS-3000 High Pressure Ion Chromatography using the
hydrolysate from the lignin analysis [Blumenkrantz and Asboe-Hansen 1973].

Lignin isolation 

Lignin was isolated from  Napier grass according to  the Björkman procedure
[Björkman 1956]. Powders (10 g) were ball-milled in a ceramic ball mill at room
temperature  (70 r/min) for 3 days. The ball-milled  powders were treated with
aqueous dioxane containing 0.05mol/l  HCl  (dioxane/water,  80/20,  v/v) under
a nitrogen environment at 85°C for 4 h. The mixture was filtered to obtain the
filtrate and the precipitate. The filtrate was neutralized with 1 mol/L NaOH to
pH 5.5, vacuum-distillated, precipitated by adding 95% ethanol. The filtrate was
filtered from the solution, vacuum-distillated, then neutralized with 6 mol/LHCl
to pH 2.0 to obtain the precipitate. The precipitate was washed with acidic water
(pH 2.0)  to  obtain  the  lignin  sample.  The  lignin  sample  was  freeze-dried
overnight, and then stored at 5°C.

Results and discussion

Chemical composition at different stages of growth

The  contents  of  the  main  components  (i.e.  acetone  extractives,  cellulose,
holocellulose, lignin, ash, xylan, glucan) in  Napier grass at different stages of
growth are  listed in  table 1.  The lignin content  was  found to increase in  the
growing seasons and reached its maximal value after 8 months, whereas Napier
grass showed a decrease in the content of acetone extractives and ash with its
growth. The amount of cellulose, holocellulose has the highest content (36.34%,
59.13%) after 4 months, and showed a decrease 8 months later, while that of
xylan, glucan showed a progressive increase in the growth period. 

Table 1. Chemical composition of Napier grass at different stages of growth

Constituent
Content [% o.d. mass]

2 months 4 months

Acetone extractives 15.93 13.51
Cellulose 32.06 36.34

Holocellulose 37.63 59.13

Klason lignin 12.03 14.47

Acid-soluble lignin   2.03   2.81

Total lignin 14.06 17.28

Ash 14.03   9.27

Xylan 16.46 18.69
Glucan 34.65 37.86
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Py-GC/MS of lignin at different stages of growth

Fig.  1. Py-GC-MS  chromatogram  of  Napier  grass lignin  at  stage  of  (a)  2  months,
(b) 4 months, and (c) 8 months 

Py-GC-MS has been  widely used used to explore the composition of lignin in
plants  [Rodrigues et al. 1999; Rencoret et al. 2007; Chen et al. 2015]. Py-GC-
MS chromatograms of lignin samples at different growth stages are shown in
figure 1, and the compounds and their relative molar abundances are listed in
table 2.  Among the compounds as identified by Py-GC-MS, S- and G-lignin
units were included, such as 4-vinylsyringol  (no. 16), propylsyringol  (no. 18),
allylsyringol  (no. 19),  sinapaldehyde  (no. 21),  acetosyringone  (no. 24),
syringylacetone  (no. 26),  sinapyl  alcohol  (no. 28),  syringaldehyde  (no. 29),
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guaiacol  (no. 2),  4-methylguaiacol  (no. 6),  4-vinylguaiacol  (no. 9),  vanillin
(no. 13), vanillic acid (no. 15). Moreover, some compounds were also available
in considerable amounts, which were derived from H lignin units, such as phenol
(no. 1),  2-methylphenol  (no. 3),  4-methylphenol  (no. 4),  4-ethylphenol  (no. 5),
2,4-dimethylphenol  (no. 7) [Ralph and Hatfield 1991; Abdulkhani et al. 2010;
Laskar et al. 2012].

Table 2 Relative molar abundance of the lignin-derived units of Napier grass lignin
at the different growth stages

No. Compounds
Relative molar abundance [%]

2 months 4 months

  1 Phenol   4.84   6.27
  2 Guaiacol   6.57   7.72
  3 2-Methylphenol   1.22   2.29
  4 4-Methylphenol   1.32   2.46
  5 4-Ethylphenol   1.54   2.58
  6 4-Methylguaiacol   6.28   6.82
  7 2,4-Dimethylphenol   1.76   3.07
  8 4-Ethylguaiacol   1.47   1.83
  9 4-Vinylguaiacol   7.70   8.47
10 Eugenol   0.38   0.33
11 Propylguaiacol   0.36   0.47
12 Isoeugenol   0.64   1.24
13 Vanillin   3.55   3.62
14 Homovanillin   0.36   0.61
15 Vanillic acid   0.53   0.83
16 4-Vinylsyringol 12.47   9.33
17 Guaiacylacetone   1.46   1.82
18 Propylsyringol   3.68   2.17
19 Allylsyringol   4.72   3.18
20 Dihydroconiferyl alcohol   0.77   1.34
21 Sinapaldehyde   6.98   6.36
22 Homosyringaldehyde   2.47   1.77
23 Syringic acid   3.74   2.65
24 Acetosyringone   5.38   4.67
25 Coniferaldehyde   1.66   1.75
26 Syringylacetone   5.37   4.84
27 Dihydrosinapyl alcohol   3.15   2.87
28 Sinapyl alcohol   5.06   4.72
29 Syringaldehyde   4.57   3.92

Total G 31.73 36.85
Total S 57.59 46.48
Total H 10.68 16.67



42 Xue-Fei ZHOU

GSH type structures were found in all lignins at the different growth stages,
according to the relative molar abundance of the lignin-derived units, as shown
in table 2. At all growth stages, the abundance of S-type units decreased and that
of G-type units increased with the growing seasons, with an S-G ratio ranging
from 1.81 in the 2 months’lignin to 0.84 in the 8 months’lignin.  Contrarily, an
increase in lignin S-G ratio was reported in lignin as kenaf growing [Mazumder
et  al.  2005].  This  difference  could  be  due  to  the  variation  in  monolignol
deposition in the timing of growth [Lee et al. 2013; Yuree et al. 2013]. Besides,
the S-G ratio of 8 months’lignin was similar to what happened with cardoon
lignin [0.79] [Lourenço et al. 2015]. 

The abundance  of  H-type  compounds  increased  from 10.68% to  17.08%
during growth. H-units were deposited, followed by G-units, and S-units were
then  reduced  at  the  final  stage,  which  was  opposite  to  Rencoret's  findings
obtained in young versus adult eucalyptus lignin [Rencoret et al. 2011].

HSQC-NMR of lignin at different stages of growth

The lignin samples were also characterized using 2D-NMR (fig. 2). The relative
abundance of the substructures found in the different lignin samples are listed in
table 3. All lignin samples showed  distinct β-O-4' structures  (A), as shown in
figure 2, which was an important linkage in lignin structure. Moreover, other
substructures  such  as  resinol  (B),  phenylcoumaran  (C) and spirodienone  (D)
were also found in all the spectra. 

Table 3. Relative abundance of the lignin side-chains involved in different linkages
from Napier grass lignin at the different growth stages

Linkages
Relative abundance [%]

2 months 4 months

β-O-4' aryl ether (A) 67.70 69.27
Resinol (B) 21.26 20.05

Phenylcoumaran (C)   2.49   3.26

Spirodienones (D)   1.27   1.68

β-1' structures (E)   1.76   1.25

β-O-4' oxidized at Cα (F)   1.26   2.13

Cinnamyl alcohol end-groups (I)   4.26   2.36

G 30.28 37.01

S 60.26 47.16
H   9.46 15.83

The data in table 3 indicated the same trend in change with the data found by
Py-GC/MS with respect to the H-, G-, S-substructures. All lignins contained the
most abundance of β-O-4', β-β' resinol linkage in the substructures. The lower
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amounts of units such as phenylcoumaran (C) (2.49-4.47%), spirodienones (D)
(1.27-2.34%), β-1' structures (E) (1.06-1.76%), cinnamyl alcohol end-groups (I)
(1.73-4.26%) were observed in the lignins in a range from 1-5% during growth.

Fig.  2. HSQC NMR spectra of  of  Napier grass lignin at  stage  of  (a)  2  months,
(b) 4 months, and (c) 8 months. (A) β-O-4'; (B) resinol (β-β'); (C) phenylcoumaran
(β-5'); (D) spirodienone (β-1'/α-O-α'); (E) β-1'; (F) Cα-oxidized β-O-4'; (G) guaiacyl
units; (H)  p-hydroxyphenyl units; (I)  p-hydroxycinnamyl alcohol end-groups; (S)
syringyl units; and (S') oxidized syringyl units containing a carbonyl group at Cα

In addition, the content of phenylcoumaran units increased, which indicated
an increase of G-units with growth. With respect to the change in G-, S-types,
the abundance of β-1' structures decreased while the abundance of spirodienones
increased with lignification. A small number of substructures were found to be
oxidized during growth. β-O-4' linkages oxidized at Cα (F) and occurred during
lignification of Napier grass at the different growth stages.

Conclusions

The change  in  compositional  content  and lignin structure  in  Napier  grass  at
different  stages  of  growth were  studied.  The  compositional  content  changed
during lignification of Napier grass. The H-monolignols were first  deposited,
then the G-units, and finally the S-units with growth. The inter-unit linkages in
the  lignin structure  were hence  distributed following the  deposition order  of
monolignols.  Phenylcoumaran  structures  increased,  which  resulted  in  the
increase of the G-units during lignification. Simultaneously, the decrease of β-β'
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resinol units derived from S-structures gave rise to the decrease of S-structures
with lignification.
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