PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimizing the mechanical properties of 3D-printed PLA-graphene composite using response surface methodology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This work aims to study the relationship between various processing parameters to fabricate PLA-graphene based 3D parts with high mechanical properties. The selected parameters in this study are known for their critical impact on the final properties of printed parts. Design/methodology/approach: Three key printing parameters are simultaneously studied in a systematic manner using central composite design (CCD). The selected printing parameters are printing temperature, printing speed, and layer thickness. Findings: Through a variance analysis, all tested printing parameters significantly impact the final properties of printed PLA-graphene’s parts. A response surface methodology (RSM) was also applied to analyse the results and to optimize the tensile and the flexural properties. According to this latter methodology, the optimum factor levels are found at 200°C printing temperature, 34.65 mm s-1 printing speed and 0.2 mm layer thickness. Research limitations/implications: Results indicate that layer thickness and printing speed are the dominant contributors to tensile and flexural properties. Originality/value: As one of the few polymers loaded with nanoparticles available, polylactic acid (PLA) reinforced graphene was selected in this study as a base material for FFF 3D printing process. A response surface methodology was applied to analyse the results and to maximize the tensile and flexural properties of 3D printed PLA-graphene composite.
Rocznik
Strony
13--22
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Meknes road, Bensouda roundabout, 30 000, Fès, Morocco
autor
  • Euromed Polytechnic School, Euromed Research Center, Euromed University of Fes, Meknes road, Bensouda roundabout, 30 000, Fès, Morocco
Bibliografia
  • [1] A. El Magri, S. Vaudreuil, K. El Mabrouk, M. Ebn Touhami, Printing temperature effects on the structural and mechanical performances of 3D printed poly- (phenylene sulfide) material, IOP Conference Series: Materials Science and Engineering 783 (2020) 012001. DOI: https://doi.org/10.1088/1757-899X/783/1/012001
  • [2] M. Mansour, K. Tsongas, D. Tzetzis, Measurement of the mechanical and dynamic properties of 3D printed polylactic acid reinforced with graphene, Polymer- Plastics Technology and Materials 58/11 (2019) 1234- 1244. DOI: https://doi.org/10.1080/03602559.2018.1542730
  • [3] Y. Li, Z. Feng, L. Huang, K. Essa, E. Bilotti, H. Zhang, T. Peijs, L. Hao, Additive manufacturing high performance graphene-based composites: A review, Composites Part A: Applied Science and Manufacturing 124 (2019) 105483. DOI: https://doi.org/10.1016/j.compositesa.2019.105483
  • [4] J. Martínez, J.L. Diéguez, E. Ares, A. Pereira, P. Hernandez, J.A. Pérez, Comparative between FEM models for FDM parts and their approach to a real mechanical behaviour, Procedia Engineering 63 (2013) 878-884. DOI: https://doi.org/10.1016/j.proeng.2013.08.230
  • [5] A. El Magri, S. Vanaei, S. Vaudreuil, An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts, High Performance Polymers 33/8 (2021) 862-880. DOI: https://doi.org/10.1177/09540083211009961
  • [6] O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in Manufacturing 3 (2015) 42-53. DOI: https://doi.org/10.1007/s40436-014-0097-7
  • [7] A. El Magri, K. El Mabrouk, S. Vaudreuil, M. Ebn Touhami, Experimental investigation and optimization of printing parameters of 3D-printed polyphenylene sulfide through response surface methodology, Journal of Applied Polymer Science 138/1 (2020) 49625. DOI: https://doi.org/10.1002/app.49625
  • [8] H. Vanaei, M. Shirinbayan, M. Deligant, K. Raissi, J. Fitoussi, S. Khelladi, A. Tcharkhtchi, Influence of process parameters on thermal and mechanical properties of polylactic acid fabricated by fused filament fabrication, Polymer Engineering and Science 60/8 (2020) 1822-1831. DOI: https://doi.org/10.1002/pen.25419
  • [9] N.G. Karsli, A. Aytac, Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites, Composites Part B: Engineering 51 (2013) 270-275. DOI: https://doi.org/10.1016/j.compositesb.2013.03.023
  • [10] F. Ashenai Ghasemi, I. Ghasemi, S. Menbari, M. Ayaz, A. Ashori, Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology, Polymer Testing 25 (2016) 283-292. DOI: https://doi.org/10.1016/j.polymertesting.2016.06.012
  • [11] B.W. Chieng, N.A. Ibrahim, W.M.Z. Wan Yunus, Optimization of Tensile Strength of Poly(Lactic Acid)/Graphene Nanocomposites Using Response Surface Methodology, Polymer-Plastics Technology and Engineering 51/8 (2012) 791-799. DOI: https://doi.org/10.1080/03602559.2012.663043
  • [12] H.R. Vanaei, M. Deligant, M. Shirinbayan, K. Raissi, J. Fitoussi, S. Khelladi, A. Tcharkhtchi, A comparative in-process monitoring of temperature profile in fused filament fabrication, Polymer Engineering and Science 61/1 (2021) 68-76. DOI: https://doi.org/10.1002/pen.25555
  • [13] A. El Magri, K. El Mabrouk, S. Vaudreuil, Preparation and characterization of poly(ether ether ketone)/ poly(ether imide) [PEEK/PEI] blends for fused filament fabrication, Journal of Materials Science 56 (2021) 14348-14367. DOI: https://doi.org/10.1007/s10853-021-06172-x
  • [14] A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane, M. Ebn Touhami, Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly(ether ether ketone) parts, Journal of Applied Polymer Science 137/37 (2020) 49087. DOI: https://doi.org/10.1002/app.49087
  • [15] M.Á. Caminero, J.M. Chacón, E. García-Plaza, P.J. Núñez, J.M. Reverte, J.P. Becar, Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture, Polymers 11/5 (2019) 799. DOI: https://doi.org/10.3390/polym11050799
  • [16] J.C. Camargo, Á.R. Machado, E.C. Almeida, E.F.M.S. Silva, Mechanical properties of PLA-graphene filament for FDM 3D printing, The International Journal of Advanced Manufacturing Technology 103 (2019) 2423-2443. DOI: https://doi.org/10.1007/s00170-019- 03532-5
  • [17] A. El Magri, K. El Mabrouk, S. Vaudreuil, M. Ebn Touhami, Mechanical properties of CF-reinforced PLA parts manufactured by fused deposition modeling, Journal of Thermoplastic Composite Materials 34/5 (2021) 581-595. DOI: https://doi.org/10.1177/0892705719847244
  • [18] P. Geng, J. Zhao, W. Wu, W. Ye, Y. Wang, S. Wang, S. Zhang, Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament, Journal of Manufacturing Processes 37 (2019) 266-273. DOI: https://doi.org/10.1016/j.jmapro.2018.11.023
  • [19] V. Kishore, X. Chen, C. Ajinjeru, A.A. Hassen, J. Lindahl, J. Failla, V. Kunc, C. Duty, Additive Manufac-turing of High Performance Semicrystalline Thermo-plastics and Their Composites, Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, Austin, Texas, USA, 2016, 906-915.
  • [20] Minitab 18 Support. Avaliable from: https://support.minitab.com/en-us/minitab/18/, Access in: 10.04.2021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a5281b4-beb5-4425-b433-b84d1f3b4868
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.