PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fast bearing fault diagnosis of rolling element using Lévy Moth-Flame optimization algorithm and Naive Bayes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fault diagnosis is part of the maintenance system, which can reduce maintenance costs, increase productivity, and ensure the reliability of the machine system. In the fault diagnosis system, the analysis and extraction of fault signal characteristics are very important, which directly affects the accuracy of fault diagnosis. In the paper, a fast bearing fault diagnosis method based on the ensemble empirical mode decomposition (EEMD), the moth-flame optimization algorithm based on Lévy flight (LMFO) and the naive Bayes (NB) is proposed, which combines traditional pattern recognition methods meta-heuristic search can overcome the difficulty of selecting classifier parameters while solving small sample classification under reasonable time cost. The article uses a typical rolling bearing system to test the actual performance of the method. Meanwhile, in comparison with the known algorithms and methods was also displayed in detail. The results manifest the efficiency and accuracy of signal sparse representation and fault type classification has been enhanced.
Rocznik
Strony
730--740
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
  • School of Computer Science, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
  • Lublin University of Technology, ul. Nadbystrzycka 36, 20-618, Lublin, Poland
autor
  • Wuhan Fiberhome Technical Services Co., Ltd., Wuhan FiberHome Telecommunication Technologies Co., Ltd., Wuhan, Hubei, 430074, PR China
autor
  • Wuhan Fiberhome Technical Services Co., Ltd., Wuhan FiberHome Telecommunication Technologies Co., Ltd., Wuhan, Hubei, 430074, PR China
autor
  • School of Computer Science, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
autor
  • Lviv Polytechnic National University, Karpinskoho str. 1, Lviv, Ukraine
Bibliografia
  • 1. Antoniadou I, Manson G, Staszewski W, Barszcz T, Worden K. A time-frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions. Mechanical Systems and Signal Processing 2015; 64-65: 188-216, https://doi.org/10.1016/j.ymssp.2015.03.003.
  • 2. Awadallah M, Morcos M. Application of AI tools in fault diagnosis of electrical machines and drives-an overview. IEEE Transactions on Energy Conversion 2003; 18: 245-251, https://doi.org/10.1109/TEC.2003.811739.
  • 3. Chudzik A, Warda B. Fatigue life prediction of a radial cylindrical roller bearing subjected to a combined load using FEM. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2020; 22(2): 212-220, https://doi.org/10.17531/ein.2020.2.4.
  • 4. Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) 1996; 26: 29-41, https://doi.org/10.1109/3477.484436.
  • 5. Eberhart R, Kennedy J. A new optimizer using particle swarm theory. MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science; IEEE: Nagoya, Japan 1995; 39-43, https://doi.org/10.1109/MHS.1995.494215.
  • 6. Feng Z, Liang M, Zhang Y, Hou S. Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation. Renewable Energy 2012; 47: 112-126, https://doi.org/10.1016/j.renene.2012.04.019.
  • 7. Glowacz A. Recognition of acoustic signals of induction motor using fft, smofs-10 and lsvm. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2015; 17(4): 569-574, https://doi.org/10.17531/ein.2015.4.12.
  • 8. Goldberg D E, Holland J H. Genetic Algorithms and Machine Learning. Machine Learning 1988; 3: 95-99, https://doi.org/10.1023/A:1022602019183.
  • 9. Guo W, Tse P W, Djordjevich A. Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition. Measurement 2012; 45: 1308-1322, https://doi.org/10.1016/j.measurement.2012.01.001.
  • 10. Holland J H. Adaptation in Natural and Artificial Systems; MIT press 1992, https://doi.org/10.7551/mitpress/1090.001.0001.
  • 11. Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 1998; 454: 903-995, https://doi.org/10.1098/rspa.1998.0193.
  • 12. Jiang F, Zhu Z, Li W, Chen G., Zhou G. Robust condition monitoring and fault diagnosis of rolling element bearings using improved EEMD and statistical features. Measurement Science and Technology 2014; 25: 025003, https://doi.org/10.1088/0957-0233/25/2/025003.
  • 13. Jiang F, Zhu Z, Li W, Zhou G, Chen G. Fault identification of rotor-bearing system based on ensemble empirical mode decomposition and self-zero space projection analysis. Journal of Sound and Vibration 2014; 333: 3321-3331, https://doi.org/10.1016/j.jsv.2014.03.014.
  • 14. Jun S, Kochan O, Kochan R. Thermocouples with Built-In Self-testing. International Journal of Thermophysics 2016; 37: 37, https://doi.org/10.1007/s10765-016-2044-2.
  • 15. Jun S, Kochan O. Common mode noise rejection in measuring channels. Instruments and Experimental Techniques 2015; 58: 86-89, https://doi.org/10.1134/S0020441215010091.
  • 16. Kennedy J. Swarm Intelligence. In Handbook of Nature-Inspired and Innovative Computing; Zomaya, A.Y., Ed.; Kluwer Academic Publishers: Boston 2006; 187-219, https://doi.org/10.1007/0-387-27705-6_6.
  • 17. Kennedy J. The particle swarm: social adaptation of knowledge. Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97) 1997; 303-308, https://doi.org/10.1109/ICEC.1997.592326.
  • 18. Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks 1995; vol. 4: 1942-1948, https://doi.org/10.1109/ICNN.1995.488968.
  • 19. Kosicka E, Kozłowski E, Mazurkiewicz D. Intelligent Systems of Forecasting the Failure of Machinery Park and Supporting Fulfilment of Orders of Spare Parts. In International Conference on Intelligent Systems in Production Engineering and Maintenance. Springer, Cham. 2017; 54-63, https://doi.org/10.1007/978-3-319-64465-3_6.
  • 20. Kotary D K, Nanda S J. (2020). Distributed robust data clustering in wireless sensor networks using diffusion moth flame optimization. Engineering Applications of Artificial Intelligence 2020; 87: 103342, https://doi.org/10.1016/j.engappai.2019.103342.
  • 21. Kozłowski E, Mazurkiewicz D, Żabiński T, Prucnal S, Sęp J. Assessment model of cutting tool condition for real-time supervision system. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(4): 679-685, https://doi.org/10.17531/ein.2019.4.18.
  • 22. Lei Y, He Z, Zi Y, Hu Q. Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs. Mechanical Systems and Signal Processing 2007; 21: 2280-2294, https://doi.org/10.1016/j.ymssp.2006.11.003.
  • 23. Lei Y, He Z, Zi Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing 2009; 23: 1327-1338, https://doi.org/10.1016/j.ymssp.2008.11.005.
  • 24. Leturiondo U, Salgado O, Galar D. Multi-body modelling of rolling element bearings and performance evaluation with localised damage. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2016; 18(4): 638-648, https://doi.org/10.17531/ein.2016.4.20.
  • 25. Li C, Li S, Liu Y. A least squares support vector machine model optimized by moth-flame optimization algorithm for annual power load forecasting. Applied Intelligence 2016; 45: 1166-1178, https://doi.org/10.1007/s10489-016-0810-2.
  • 26. Li Q, Chen H, Huang H, Zhao X, Cai Z, Tong C, Liu W, Tian X. An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis. Computational and Mathematical Methods in Medicine 2017; 1-15, https://doi.org/10.1155/2017/9512741.
  • 27. Liu Y, Wang G, Chen H, Dong H, Zhu X, Wang S. An improved particle swarm optimization for feature selection. Journal of Bionic Engineering 2011; 8: 191-200, https://doi.org/10.1016/S1672-6529(11)60020-6.
  • 28. Luo M, Li C, Zhang X, Li R, An X. Compound feature selection and parameter optimization of ELM for fault diagnosis of rolling element bearings. ISA Transactions 2016; 65: 556-566, https://doi.org/10.1016/j.isatra.2016.08.022.
  • 29. Mafarja M M, Mirjalili S. Hybrid Whale Optimization Algorithm with simulated annealing for feature selection. Neurocomputing 2017; 260: 302-312, https://doi.org/10.1016/j.neucom.2017.04.053.
  • 30. Maior C B S, Chagas Moura M, Lins I D. Particle swarm-optimized support vector machines and pre-processing techniques for remaining useful life estimation of bearings. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2019; 21(4): 610-619, https://doi.org/10.17531/ein.2019.4.10.
  • 31. Mei R N S, Sulaiman M H, Mustaffa Z, Daniyal H. Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique. Applied Soft Computing 2017; 59: 210-222, https://doi.org/10.1016/j.asoc.2017.05.057.
  • 32. Mirjalili S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems 2015; 89: 228-249, https://doi.org/10.1016/j.knosys.2015.07.006.
  • 33. Nematollahi A F, Rahiminejad A, Vahidi B. A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization. Applied Soft Computing 2017; 59: 596-621, https://doi.org/10.1016/j.asoc.2017.06.033.
  • 34. Przystupa K, Ambrożkiewicz B, Litak G. Diagnostics of Transient States in Hydraulic Pump System with Short Time Fourier Transform. Advances in Science and Technology. Research Journal, 2020; 14(1): 178-183, https://doi.org/10.12913/22998624/116971.
  • 35. Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: A Gravitational Search Algorithm. Information Sciences 2009; 179: 2232-2248, https://doi.org/10.1016/j.ins.2009.03.004.
  • 36. Rodrigues D, Pereira L A, Nakamura R Y, Costa K A, Yang X S, Souza A N, Papa J P. A wrapper approach for feature selection based on Bat Algorithm and Optimum-Path Forest. Expert Systems with Applications 2014; 41: 2250-2258, https://doi.org/10.1016/j.eswa.2013.09.023.
  • 37. Rubini R, Meneghetti U. Application of the envelope and wavelet transform analyses for the diagnosis of incipient faults in ball bearings. Mechanical Systems and Signal Processing 2001; 15: 287-302, https://doi.org/10.1006/mssp.2000.1330.
  • 38. Sharawi M, Zawbaa H M, Emary E, Zawbaa H M, Emary E. Feature selection approach based on whale optimization algorithm. 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI); IEEE: Doha, Qatar 2017; 163-168, https://doi.org/10.1109/ICACI.2017.7974502.
  • 39. Stahczyk U. Feature Evaluation by Filter, Wrapper, and Embedded Approaches. In Feature Selection for Data and Pattern Recognition;Stahczyk, U.; Jain, L.C., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg 2015; 584: 29-44, https://doi.org/10.1007/978-3-662-45620-0_3.
  • 40. Storn R, Price K. Minimizing the real functions of the ICEC'96 contest by differential evolution. Proceedings of IEEE International Conference on Evolutionary Computation; IEEE: Nagoya, Japan 1996; 842-844, https://doi.org/10.1109/ICEC.1996.542711.
  • 41. Sulaiman M H, Mustaffa Z, Aliman O, Daniyal H, Mohamed M R. Application of moth-flame optimization algorithm for solving optimal reactive power dispatch problem. 4th IET Clean Energy and Technology Conference (CEAT 2016) 2016, https://doi.org/10.1049/cp.2016.1273.
  • 42. Wan Y, Wang M, Ye Z, Lai X. A feature selection method based on modified binary coded ant colony optimization algorithm. Applied Soft Computing 2016; 49: 248-258, https://doi.org/10.1016/j.asoc.2016.08.011.
  • 43. Wang X, Yang J, Teng X, Xia W, Jensen R. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 2007; 28: 459-471, https://doi.org/10.1016/j.patrec.2006.09.003.
  • 44. Wolpert D H. The lack of a priori distinctions between learning algorithms. Neural Computation 1996; 8: 1341-1390, https://doi.org/10.1162/neco.1996.8.7.1341.
  • 45. Zawbaa H M, Emary E, Grosan C, Feature Selection via Chaotic Antlion Optimization. PLOS ONE 2016; 11: e0150652, https://doi.org/10.1371/journal.pone.0150652.
  • 46. Zhang L, Xiong G, Liu H, Zou H, Guo W. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Systems with Applications 2010; 37: 6077-6085, https://doi.org/10.1016/j.eswa.2010.02.118.
  • 47. Zhang W, Jia M P, Zhu L, Yan X A. Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis. Chinese Journal of Mechanical Engineering 2017; 30: 782-795, https://doi.org/10.1007/s10033-017-0150-0.
  • 48. Zhang X, Zhou J. Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines. Mechanical Systems and Signal Processing 2013; 41: 127-140, https://doi.org/10.1016/j.ymssp.2013.07.006.
  • 49. Zhang Y, Zuo H, Bai F. Classification of fault location and performance degradation of a roller bearing. Measurement 2013; 46: 1178-1189, https://doi.org/10.1016/j.measurement.2012.11.025.
  • 50. Zio E. Reliability engineering: Old problems and new challenges. Reliability Engineering & System Safety 2009; 94: 125-141, https://doi.org/10.1016/j.ress.2008.06.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a4f6c24-7304-48df-af51-d503a9c7c9de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.