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Abstract: This paper is devoted to the discussion of the expo-
nential stability of a networked hyperbolic system with a circle. Our
analysis extends an example by Bastin and Coron about the limits
of boundary stabilizability of hyperbolic systems to the case of a
networked system that is defined on a graph which contains a cycle.
By spectral analysis, we prove that the system is stabilizable while
the length of the arcs is sufficiently small. However, if the length
of the arcs is too large, the system is not stabilizable. Our results
are robust with respect to small perturbations of the arc lengths.
Complementing our analysis, we provide numerical simulations that
illustrate our findings.

Keywords: hyperbolic system, exponential stability, circle, net-
work

1. Introduction

In this paper, we discuss the boundary feedback stabilization of a networked
hyperbolic system with a circle. This is motivated by applications in engineering,
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where networked systems (for example networks of gas pipelines) often contain
cycles, see Schmidt et al. (2017). The stabilization of tree-shaped networks has
been studied in depth (see Gu and Li, 2011; Li and Dao, 2004). Studies, where
cycles are not excluded are scarce (see, for example, Gugat and Weiland, 2021).
Figure 1 shows a network with a circle that we study in this paper. At the end
L1 of Arc 1 a boundary feedback control action takes place.

L1 L2 = L30 0

Boundary Feedback
control at L1,
u1
x = −K1u

1
t

Arc 1

Arc 2

Arc 3

Arc 4

L4

Figure 1: A network with a circle in 4 edges

We consider a network with a circle and two additional edges. At one bound-
ary node, feedback control action takes place. At the other boundary node, a
homogeneous Dirichlet condition is prescribed. For k ∈ {1, 2, 3, 4}, let real
numbers ck > 0, εk ≥ 0, be given. We consider the following system:





uk
tt = uk

xx − 2εku
k
t − (ε2k − c2k)u

k,

t ∈ (0,+∞), x ∈ (0, Lk), k ∈ {1, 2, 3, 4},
u1(t, 0) = u2(t, 0) = u3(t, 0),

u2(t, L2) = u3(t, L3) = u4(t, L4),

Σk=1,2,3u
k
x(t, 0) = 0,

Σk=2,3,4u
k
x(t, Lk) = 0,

u4(t, 0) = 0,

u1
x(t, L1) = −K1u

1
t (t, L1).

(1.1)

The real number K1 is the control gain. Besides, the initial state is given:

®
U(0, x) = (u1(0, x), ..., u4(0, x)) = (u1

0(x), ..., u
4
0(x)),

V (0, x) = (u1
t (0, x), ..., u

4
t (0, x)) = (v10(x), ..., v

4
0(x)).

(1.2)
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We give a result about the well-posedness of the solution to the system
(1.1) in Lemma 2.1 in Section 2 of the present paper. The result requires the
regularity, namely uk

0 ∈ H1(0, Lk), v
k
0 ∈ L2(0, Lk). Then we can investigate the

exponential stability of the system. The definition of exponential stability is
given below:

Definition 1.1 The networked hyperbolic system (1.1) is said to be H1−expo-
nentially stable if there exist α > 0 and C > 0 such that, for every

U(0, ·) ∈
4∏

k=1

H1(0, Lk), V (0, ·) ∈
4∏

k=1

L2(0, Lk),

that satisfy the compatibility condition (2.1), the solution to the system (1.1)
satisfies:

‖U(t, ·)‖H1 ≤ Ce−αt‖U(0, ·)‖H1 , t ≥ 0,

with

‖U(t, ·)‖2H1 =

4∑

k=1

∫ Lk

0

uk(t, x)2 + uk
x(t, x)

2dx.

The (not necessarily exponential) stability of the system is defined as follows:

Definition 1.2 We say that the system (1.1) (1.2) is stabilizable if there exists

a control parameter K1 ∈ R, such that for all U(0, ·) ∈
4∏

k=1

H1(0, Lk), V (0, ·) ∈
4∏

k=1

L2(0, Lk), we have

lim
t→+∞

‖U(t, ·)‖H1 = 0.

If εk > ck, the exponential boundary feedback stabilization is possible for
arbitrary lengths, because, in this case, the source term is dissipative. Thus, for
the examples of the limits of stability, we assume that εk ∈ [0, ck].

In Bastin and Coron (2016, Chapter 5.6, pp 197), Coron and Bastin state
that for systems of balance laws, there is an intrinsic limit of stabilization under
local boundary control. A 2 × 2 system with stabilizing boundary feedback at
one point of the boundary has been discussed, for which, if the space interval
is sufficiently long, stabilization is impossible for all control parameters. It is
proven that the following system





∂ty1 + ∂xy1 + cy2 = 0, t ∈ (0,+∞), x ∈ (0, L),

∂ty2 − ∂xy2 + cy1 = 0,

y2(t, L) = y1(t, L),

y1(t, 0) = ky2(t, 0).

(1.3)
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cannot be exponentially stable with any control gain k ∈ R if L ≥ π
c
. Since

for L ∈ (0, π
c
) the system is exponentially stable for suitable k, we obtain the

dichotomy value of the interval length of the closed-loop system (1.3), Lc =
π
c
,

see Huang, Wang and Zhou (2022). This shows that in the boundary control
of hyperbolic systems, the relation between the source term and the length of
the space interval matters. In this contribution, we want to explore the limits
of stabilizability for (1.1).

Gugat and Gerster (2019) discuss the limits of stabilizability for the star-
shaped networks of strings, inspired by Coron. In Gugat and Gerster (2019),
they show that the system is stabilizable if the lengths of the arcs are sufficiently
small and that it is not stabilizable in some other cases. Nakić and Veselić (2020)
consider the perturbation of eigenvalues of our discussed operator, although
their analysis primarily approached the topic here considered from an abstract
operator perspective.

Define the matrices

D =

Å
1 0
0 −1

ã
, M =

Å
ε c
c ε

ã
.

Consider the first order 2× 2 system

Yt +DYx +M Y = 0. (1.4)

For ε = 0, this yields the PDE in system (1.3). If c2 = ε2, M is positive
semi-definite. Note that twice continuously differentiable solutions of (1.4) also
satisfy the wave equation

Ytt = Yxx − 2εYt − (ε2 − c2)Y (1.5)

that is, both of the components satisfy the wave equation from (1.1). This can
be seen as follows: System (1.4) yields

Ytt = D2Yxx − (DM +MD)(D−1Yt +D−1MY ) +M2 Y.

Since
D2 = I

and

(DM +MD)D = 2εI and M2 − (DM +MD)DM = (c2 − ε2)I

this yields (1.5). Systems of the form (1.4) can occur as the linearization of
quasilinear hyperbolic systems that appear in many applications, for example of
the isothermal Euler equations that describe gas pipeline flow, see, for example,
Gugat and Giesselmann (2021).
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In this paper, inspired by Bastin and Coron (2016) and Gugat and Gerster
(2019), we study the limits of the stabilizability of a networked hyperbolic sys-
tem with a circle by spectral analysis. This second-order system is equivalent
to the 2 × 2 first-order system (1.4) under suitable variable substitution. We
begin with a simple subcase of the system (1.1). It is an instructive result for
the system with circles.

The main result of this article is the following:

Theorem 1.1 Assume that ck = c1 = c > 0, εk = ε1 = ε > 0, Lk = L1 = L,
that is the length of the arcs in the network and the parameters are the same
for all arcs. Assume that for the initial state the compatibility conditions (2.1)
are satisfied and ε ∈ (0, c).

• If L < Lmin =
arctan

√
2
7√

c2−ε2
, the system (1.1)-(1.2) is stabilizable (with |K1|

sufficiently small);
• If L > Lmax = π

2
√
c2−ε2

, the system (1.1)-(1.2) is not stabilizable.

For the proof see Proposition 3.1 and Proposition 4.1.

Remark 1.1 Note that if ε is sufficiently close to c > 0, the value of Lmin can
become arbitrarily large. If c is sufficiently large, the value of Lmin can become
arbitrarily small. There is still a gap between Lmin and Lmax, and the idea of
eliminating the gap is to analyze all eigenvalues on the imaginary axis for each
interval length L. However, on account of the complexity of the characteristic
equation, the result cannot be obtained as of this writing.

Now we state a result for the special case, where ε = 0. In this case, Lmax

is minimal as a function of ε.

Proposition 1.1 Under the assumptions of Theorem 1.1, for c > 0 and ε = 0
we obtain the statement

• If L > Lmax = π
2 c

, system (1.1)-(1.2) is not stabilizable.

For the proof see Proposition 4.1. Note that for ε = 0 the spectral analysis for
L < Lmin does not yield eigenvalues with strictly negative real parts. Therefore
we do not have a stabilizability result in this case. The structure of this paper
is as follows. In Section 2, some preliminary results are presented. Then in
Section 3, we use spectral analysis to prove the stability result and we make
perturbations on the length of arcs Lk and on the control parameter K1 and
obtain the first statement of Theorem 1.1. In Section 4, we find a real eigen-
value that is bigger than 0 under a certain condition for all discussed control
parameters, which means the system is not stabilizable. This demonstrates the
second statement of Theorem 1.1. Finally, some numerical results are given in
Sections 5 and 6.
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2. Preliminaries

In this section, we first introduce the well-posedness of the system and then
give some preliminaries that will be used in the proof of our theorem.

The well-posedness issue is fundamental to the control problems. Here we
only present the results without proof, which can be derived by classical meth-
ods, such as the method of characteristics or by the theory of strongly continuous
one-parameter semigroups of linear operators, see Pazy (1983).

Lemma 2.1 Assume uk
0 ∈ H1(0, Lk), v

k
0 ∈ L2(0, Lk) and that they satisfy the

compatibility condition (2.1) defined below:

®
u1
0(0) = u2

0(0) = u3
0(0), u2

0(L2) = u3
0(L3) = u4

0(L4),

u4
0(0) = 0.

(2.1)

Then, for each T > 0, there exists a unique weak solution

uk(t, x) ∈ C([0, T ];H1(0, Lk)) ∩ C1([0, T ];L2(0, Lk)), k ∈ {1, 2, 3, 4}

of the initial boundary value problem (1.1).

Let ũk(t, x) = uk(t, x)eεt. For the functions ũk, from (1.1), we obtain the system





ũk
tt = ũk

xx + c2kũ
k, t ∈ (0,+∞), x ∈ (0, Lk), k ∈ {1, 2, 3, 4},

ũ1(t, 0) = ũ2(t, 0) = ũ3(t, 0),

ũ2(t, L2) = ũ3(t, L3) = ũ4(t, L4),

Σk=1,2,3ũ
k
x(t, 0) = 0,

Σk=2,3,4ũ
k
x(t, Lk) = 0,

ũ4(t, 0) = 0,

ũ1
x(t, L1) = K1

(
ũ1
t (t, L1)− εũ1(t, L1)

)
.

(2.2)

Remark 2.1 From the results of Catherine Bandle and Joachim von Below
(von Below, 1988), the eigenvalue problem of the system (2.2) is a Sturm-
Liouville eigenvalue problem on the network with K1 = 0. As stated by Joachim
von Below and Gilles François at the end of the second section in von Below
and François (2005), the eigenvalue problem of the system (2.2) is still a Sturm-
Liouville eigenvalue problem with K1 6= 0. Although in von Below and François
(2005), only the boundary condition with ε = 0 is covered explicitly, the corre-
sponding result for ε 6= 0 also holds. The corresponding eigenfunctions of the
discussed system (2.2) form a complete orthonormal system in the solution space
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H, which is the completion with respect to the norm corresponding to the scalar
product (2.3) of the set

{
(
f̃1(x), f̃2(x), f̃3(x), f̃4(x), g̃1(x), g̃2(x), g̃3(x), g̃4(x)

)T ∈
4∏

k=1

C2[0, Lk]×
4∏

k=1

C2[0, Lk]

|f̃k(x), g̃k(x) (k = 1, 2, 3, 4) satisfy (BC)},

with the condition (BC) defined as follows:





f̃1(0) = f̃2(0) = f̃3(0), f̃2(L2) = f̃3(L3) = f̃4(L4),

f̃ ′
1(0) + f̃ ′

2(0) + f̃ ′
3(0) = 0, f̃ ′

2(L2) + f̃ ′
3(L3) + f̃ ′

4(L4) = 0,

f̃4(0) = 0,

g̃1(0) = g̃2(0) = g̃3(0), g̃2(L2) = g̃3(L3) = g̃4(L4),

g̃′1(0) + g̃′2(0) + g̃′3(0) = 0, g̃′2(L2) + g̃′3(L3) + g̃′4(L4) = 0,

g̃4(0) = 0,

f̃ ′
1(L1) = −K1(g̃

′
1(L1)− εf̃1(L1)).

(BC)

Let ‹F = (f1, f2, f3, f4)
T , ‹G = (g1, g2, g3, g4)

T . Let

K(‹F , ‹G) =

4∑

j=1

∫ Lj

0

fj(x)gj(x)dx.

The inner product in the Hilbert space H is

L
ÇÇ‹F1

‹G1

å
,

Ç‹F2

‹G2

åå
= K(‹F1, ‹F2) +K(‹G1, ‹G2). (2.3)

Thus, H is a subspace of
4∏

k=1

L2(0, Lk).

From Remark 2.1, the spectral properties of the system (1.1) directly determine
on the growth of the solution.

We will apply the analytic implicit function theorem in Theorem 3.1. The
analytic implicit function theorem is stated as follows:

Lemma 2.2 (Fritzsche and Grauert, 2002) Let B ⊂ C
n × C

m be an open
set, f = (f1, ..., fm) : B → C

m a holomorphic mapping, and (z0, w0) ∈ B a point
with f(z0, w0) = 0 and

det

Ç
∂fµ
∂zµ

(z0, w0)

∣∣∣∣∣
µ = 1, ...,m

ν = n+ 1, ..., n+m

å
6= 0.
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Then there is an open neighborhood U = U ′ × U ′′ ⊂ B and a holomorphic map
g : U ′ → U ′′ such that

{(z, w) ∈ U ′ × U ′′ : f(z, w) = 0} = {(z, g(z)) : z ∈ U ′}.

We also use Rouché’s theorem in the following form:

Lemma 2.3 Let C be a closed, simple curve (i.e., not self-intersecting). Let
h(z) = f(z) + g(z). If f and g are both holomorphic on the interior of C, then
h must also be holomorphic on the interior of C. Then, if

|f(z)| > |h(z)− f(z)|,
for every z in C, then f and h have the same number of zeros in the interior of
C.

3. Stability results

3.1. The essential result

In this section, we discuss the stability of the system using spectral analysis.
We suppose that for all arcs the parameters c and ε in the partial differential
equation are constants, i.e. ck = c1 = c, εk = ε1 = ε. First, in this subsection,

we can prove that for L < Lmin =
arctan

√
2
7√

c2−ε2
the system (1.1) with K1 = 0

and Lk = L (k = 1, 2, 3, 4) is L2− exponentially stable. Here all arcs have the
same length L. Then, in subsection 3.2 we consider small perturbations of the
lengths of the arcs. The system is still exponentially stable even though the
input edge and the output edge have slightly different lengths. In Section 3.3
we study perturbations of the control gain K1. For L < Lmin, the system (1.1)
with Lk = L (k = 1, 2, 3, 4) is L2− exponentially stable if |K1| is sufficiently
small.

Proposition 3.1 Assume that c > 0 and ε ∈ (0, c).

The following system (3.1) is L2− exponentially stable if L <
arctan

√
2
7√

c2−ε2
:





uk
tt = uk

xx − 2εuk
t − (ε2 − c2)uk, t ∈ (0,+∞), x ∈ (0, L), k ∈ {1, 2, 3, 4},

u1(t, 0) = u2(t, 0) = u3(t, 0),

u2(t, L) = u3(t, L) = u4(t, L),

Σk=1,2,3u
k
x(t, 0) = 0,

Σk=2,3,4u
k
x(t, L) = 0,

u4(t, 0) = 0,

u1
x(t, L) = 0.

(3.1)
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Proof From Remark 2.1 the eigenvalue problem is a Sturm-Liouville eigenvalue
problem. We can make a spectral analysis of the system (3.1).

Let λ ∈ C be the eigenvalue of the system (3.1); we look for a nontrivial
solution

U(t, x) = (u1(t, x), ..., u4(t, x))

of the system (3.1) with the form uk(t, x) = eλtϕk(x), where ϕk(x) are the
corresponding eigenfunctions.

Such a U(t, x) is a solution of the system only if for all k ∈ {1, 2, 3, 4}

λ2 ϕk = ϕ′′
k − 2λεϕk − (ε2 − c2)ϕk, (3.2)

which yields:

((λ+ ε)2 − c2)ϕk = ϕ′′
k . (3.3)

From (3.3), we have ϕk(x) = R1,ke
ηx +R2,ke

−ηx and note that:

η2 = (λ+ ε)2 − c2. (3.4)

Using the boundary condition (BC), we have





R1,1 +R2,1 = R1,2 +R2,2 = R1,3 +R2,3,

R1,1 +R1,2 +R1,3 = R2,1 +R2,2 +R2,3,

R1,2e
ηL +R2,2e

−ηL = R1,3e
ηL +R2,3e

−ηL = R1,4e
ηL +R2,4e

−ηL,

R1,2e
ηL +R1,3e

ηL +R1,4e
ηL = R2,2e

−ηL +R2,3e
−ηL +R2,4e

−ηL,

R1,4 +R2,4 = 0,

R1,1ηe
ηL +R2,1(−η)e−ηL = 0.

(3.5)

Using the fifth equation in (3.5), we can take R1,4 = 1, R2,4 = −1.
Then, using the first four equations in (3.5), we obtain:





R1,2 = R1,3 = e−ηL( 14e
ηL − 3

4e
−ηL),

R2,2 = R2,3 = eηL( 34e
ηL − 1

4e
−ηL),

R1,1 = − 1
2 + 9

8e
2ηL + 3

8e
−2ηL,

R2,1 = 1
2 − 3

8e
2ηL − 9

8e
−2ηL.

Finally, we get the characteristic equation by substituting the values of R1,1

and R2,1 into the last equation in (3.5):

η(− cosh(ηL) + 9 cosh(3ηL)) = 0. (3.6)
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Since cosh(3x) = 4 cosh3(x) − 3 cosh(x) and cosh2(x) = 1
2 (cosh(2x) + 1), we

obtain:

η cosh(ηL)
(
− 5 + 9 cosh (2ηL)

)
= 0. (3.7)

We now discuss the solutions of the characteristic equation (3.7):

• If η = 0, we have ϕk(x) ≡ R1,k + R2,k. Using boundary condition (3.5),
ϕk(x) ≡ 0, so we cannot obtain an eigenvalue.

• If cosh(ηL) = 0, let η = ηRe + ηImi (ηRe, ηIm ∈ R), we obtain

cos
(
ηImL

)
cosh

(
ηReL

)
+ i sin

(
ηImL

)
sinh

(
ηReL

)
= 0.

⋄ If sin
(
ηImL

)
= 0, we have | cos

(
ηImL

)
| = 1,

then cosh
(
ηReL

)
cos
(
ηImL

)
6= 0, so the equation cannot hold.

⋄ If sinh
(
ηReL

)
= 0, then we have ηRe = 0, so cos

(
ηImL

)
= 0. We get

a sequence of solutions {ηj = (
jπ+π

2

L
)i}j∈Z.

• If − 5
2 + 9

2 cosh (2ηL) = 0, let η = ηRe + ηImi (ηRe, ηIm ∈ R), we obtain

cos
(
2ηImL

)
cosh

(
2ηReL

)
+ i sin

(
2ηImL

)
sinh

(
2ηReL

)
=

5

9
.

⋄ If sin
(
2ηImL

)
= 0, we have | cos

(
2ηImL

)
| = 1, then cosh

(
2ηReL

)
=

± 5
9 . Thus, we have no solution for ηRe ∈ R.

⋄ If sinh
(
2ηReL

)
= 0, then we have ηRe = 0, cosh

(
2ηReL

)
= 1, so that

cosh
(
2ηImL

)
= 5

9 . We get two sequences of solutions

{η+j |η+j =

1

L
(arctan

…
2

7
+ jπ)i}j∈Z ∪ {η−j |η−j =

1

L
(− arctan

…
2

7
− jπ)i}j∈Z.

From Remark 2.1, the corresponding eigenfunctions form a complete orthonor-
mal system in the Hilbert space that is the completion of inner product space
H.

The corresponding eigenfunctions ϕj,±
k (x) of η±j satisfy

ϕj,+
k (x) = −ϕj,−

k (x), k ∈ {1, 2, 3, 4}, j ∈ Z.

The functions ϕj,+
k (x) and ϕj,−

k (x) with the same j and k are linearly dependent.
We just need to take one branch of solutions η and without loss of generality,
we take

{ηj,1|ηj,1 =
1

L
(arctan

…
2

7
+ jπ)i}j∈Z.
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The corresponding eigenfunctions ϕj
k(x) of ηj also satisfy:

ϕ−j
k (x) = −ϕj−1

k (x), j ∈ Z
+.

We finally obtain two sequences of ηj,l:

{ηj,1|ηj,1 =
1

L
(arctan

…
2

7
+ jπ)i}j∈Z ∪ {ηj,2|ηj,2 = (

jπ + π
2

L
)i}j∈N. (3.8)

All corresponding eigenvalues λj,l and eigenfunctions ϕj,l
k (x) satisfy (j ∈ Z for l =

1 and j ∈ N for l = 2, k = 1, 2, 3, 4)
®
(λ±

j,l + ε)2 = η2j,l + c2,

ϕj,l
k (x) = Rj,l

1,ke
ηj,lx +Rj,l

2,ke
−ηj,lx.

(3.9)

λ±
j,l are two roots of the eigenfunction (ϕj,l

1 , ϕj,l
2 , ϕj,l

3 , ϕj,l
4 ). Thus, for any initial

condition
Ü

u1(0, x)
u2(0, x)
u3(0, x)
u4(0, x)

ê

=
∞∑

m=−∞
c1,m,1

Ü
ϕm,1
1 (x)

ϕm,1
2 (x)

ϕm,1
3 (x)

ϕm,1
4 (x)

ê

+
∞∑

n=0

c1,n,2

Ü
ϕn,2
1 (x)

ϕn,2
2 (x)

ϕn,2
3 (x)

ϕn,2
4 (x)

ê

,

Ü
u1
t (0, x)

u2
t (0, x)

u3
t (0, x)

u4
t (0, x)

ê

=

∞∑

m=−∞
c2,m,1

Ü
ϕm,1
1 (x)

ϕm,1
2 (x)

ϕm,1
3 (x)

ϕm,1
4 (x)

ê

+

∞∑

n=0

c2,n,2

Ü
ϕn,2
1 (x)

ϕn,2
2 (x)

ϕn,2
3 (x)

ϕn,2
4 (x)

ê

,

We can represent the solution in the form

uk(t, x) =
∑

m∈Z

(c2,m,1 − λ−
m,1c1,m,1

λ+
m,1 − λ−

m,1

eλ
+

m,1t −
c2,m,1 − λ+

m,1c1,m,1

λ+
m,1 − λ−

m,1

eλ
−

m,1t
)
ϕm,1
k (x)

+
∑

n∈N

(c2,n,2 − λ−
n,2c1,n,2

λ+
n,2 − λ−

n,2

eλ
+

n,2t −
c2,n,2 − λ+

n,2c1,n,2

λ+
n,2 − λ−

n,2

eλ
−

n,2t
)
ϕn,2
k (x).

(3.10)

So, if there exists λmin < 0, such that for all λ±
j,l,

Re(λ±
j,l) ≤ λmin < 0

the system (2.2) is L2−exponentially stable. Recalling (3.8) and (3.9),

c2 + η2j,l ≤ c2 + η20,1 = c2 − 1

L2

Ç
arctan

…
2

7

å2

.
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• If |ηj,l| < c, we have c2 + η2j,l > 0,

Re(λ±
j,l) = −ε±

»
c2 + η2j,l ≤ −ε+

 
c2 − 1

L2
(arctan

…
2

7
)2 < 0.

• If |ηj,l| ≥ c, we have c2 + η2j,l ≤ 0, Re(λ±
j,l) = −ε < 0.

While L <
arctan

√
2
7√

c2−ε2
, we have

Re(λ±
j,l) < λmin = −ε+

 
c2 − 1

L2
(arctan

…
2

7
)2 < 0.

Thus, we have shown that the system (2.2) is L2−exponentially stable.

3.2. Perturbation of the arcs Lk

We show that the stability result also holds if the input edge and the output
edge have slightly different lengths. For technical reasons, we have to assume
that the edges in the cycle are of equal length.

Theorem 3.1 Assume that c > 0, ε ∈ (0, c) and L < Lmin. We consider a
small perturbation of the lengths Lk (k = 1, 2, 3, 4) of the following form:





L̃1 = L+ d1r,

L̃2 = L̃3 = L+ d2r,

L̃4 = L+ d4r.

(3.11)

Here, d1, d2, d4 and r are real constants. We consider the system:





uk
tt = uk

xx − 2εuk
t − (ε2 − c2)uk, t ∈ (0,+∞), x ∈ (0, L̃k), k ∈ {1, 2, 3, 4},

u1(t, 0) = u2(t, 0) = u3(t, 0),

u2(t, L̃2) = u3(t, L̃3) = u4(t, L̃4),

Σk=1,2,3u
k
x(t, 0) = 0,

Σk=2,3,4u
k
x(t, L̃k) = 0,

u4(t, 0) = 0,

u1
x(t, L̃1) = 0.

(3.12)

If |r| is sufficiently small, the system (3.12) is exponentially stable .
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Proof From Proposition 3.1, system (3.12) is exponentially stable with r =
0, K1 = 0. Recall that we obtain all eigenvalues λ and corresponding η of the
system (3.12) with L̃k = L (k = 1, 2, 3, 4).

The sequence of η is

{ηj,1|ηj,1 =
1

L
(arctan

…
2

7
+ jπ)i}j∈Z ∪ {ηj,2|ηj,2 = (

jπ + π
2

L
)i}j∈N. (3.13)

The eigenvalues λ±
j,l (j ∈ Z for l = 1 and j ∈ N for l = 2, k = 1, 2, 3, 4) satisfy

(λ±
j,l + ε)2 = η2j,l + c2. (3.14)

More precisely,

λ+
j,l =

{
−ε+

»
η2j,l + c2, η2j,l + c2 > 0

−ε+
»
−(η2j,l + c2)i, η2j,l + c2 < 0

λ−
j,l =

{
−ε−

»
η2j,l + c2, η2j,l + c2 > 0

−ε−
»
−(η2j,l + c2)i, η2j,l + c2 < 0

Furthermore, recall that the characteristic equation is:

η cosh(ηL)
(
− 5 + 9 cosh (2ηL)

)
= 0. (3.15)

While L̃1 6= L̃2 = L̃3 6= L̃4, from Remark 2.1 the eigenvalue problem is a Sturm-
Liouville eigenvalue problem. We can recalculate the characteristic equation.

Let λ̃ ∈ C. We look for a nontrivial solution ‹U(t, x) = (ũ1(t, x), ..., ũ4(t, x))

of the system (3.12). The form is ũk(t, x) = eλ̃tϕ̃k(x), with the eigenvalues of

the system λ̃. The corresponding eigenfunctions of ϕ̃k(x) are ũk(t, x).

Such a ‹U(t, x) can only be a solution of the system if

λ̃2ϕ̃k = ϕ̃′′
k + c2ϕ̃k. (3.16)

From (3.16), we have ϕ̃k(x) = R1,ke
η̃x +R2,ke

−η̃x and

(λ̃+ ε)2 = η̃2 + c2. (3.17)

Using the boundary condition, we have





R1,1 +R2,1 = R1,2 +R2,2 = R1,3 +R2,3,

R1,1 +R1,2 +R1,3 = R2,1 +R2,2 +R2,3,

R1,2e
η̃‹L2 +R2,2e

−η̃‹L2 = R1,3e
η̃‹L2 +R2,3e

−η̃‹L2 = R1,4e
η̃‹L4 +R2,4e

−η̃‹L4 ,

R1,2e
η̃‹L2 +R1,3e

η̃‹L2 +R1,4e
η̃‹L4 = R2,2e

−η̃‹L2 +R2,3e
−η̃‹L3 +R2,4e

−η̃‹L4 ,

R1,4 +R2,4 = 0,

η̃(R1,1e
η̃‹L1 −R2,1e

−η̃‹L1) = 0.
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(3.18)

If η̃ = 0, we have ϕ̃k(x) ≡ R1,k +R2,k. Using the first, third, and fifth equation
in (3.18), ϕ̃k(x) ≡ 0. We cannot obtain an eigenvalue, so we suppose η̃ 6= 0.

Using the fifth equation in (3.18), we can take R1,4 = 1, R2,4 = −1.

We use the right part of the first and third equations and obtain:

R1,2 = R1,3, R2,2 = R2,3. (3.19)

Then, using the third and fourth equations in (3.18) and (3.19), we obtain:
®
R1,2 = R1,3 = e−η̃‹L2( 14e

η̃‹L4 − 3
4e

−η̃‹L4),

R2,2 = R2,3 = eη̃
‹L2( 34e

η̃‹L4 − 1
4e

−η̃‹L4).

Using the first and second equations in (3.18) and (3.19), we obtain:
®
R1,1 = 3

2R2,2 − 1
2R1,2,

R2,1 = − 1
2R2,2 +

3
2R1,2.

The last equation in (3.18) yields:

R1,1 = R2,1e
−2η̃‹L1 . (3.20)

Then we have:

9 cosh
Ä
η̃L̂1

ä
+ 3 cosh

Ä
η̃L̂2

ä
− 3 cosh

Ä
η̃L̂3

ä
− cosh

Ä
η̃L̂4

ä
= 0. (3.21)

with

L̂1 = L̃1+ L̃2+ L̃4, L̂2 = L̃1− L̃2− L̃4, L̂3 = L̃1+ L̃2− L̃4, L̂4 = L̃1− L̃2+ L̃4.

We now introduce the following lemma:

Lemma 3.1 Let

H(L̃1, L̃2, L̃4, η̃) = 9 cosh
Ä
η̃(L̃1 + L̃2 + L̃4)

ä
+ 3 cosh

Ä
η̃(L̃1 + L̃2 − L̃4)

ä

− 3 cosh
Ä
η̃(L̃1 + L̃2 − L̃4)

ä
− cosh

Ä
η̃(L̃1 − L̃2 + L̃4)

ä
.

F (η̃, λ̃) = (λ̃+ ε)2 − c2 − η̃2.

For each λ±
j,l, there exists an open neighborhood V k,1

j,l , V k,2
j,l , V k,3

j,l (k = 1, 2) and

holomorphic maps hj,l : V
k,1
j,l → V k,3

j,l and gkj,l : V
k,1
j,l → V k,2

j,l such that

H
(
L̃1, L̃2, L̃4, hj,l(L̃1, L̃2, L̃4)

)
= 0,

F
(
hj,l(L̃1, L̃2, L̃4), g

k
j,l(L̃1, L̃2, L̃4)

)
= 0.

for all (L̃1, L̃2, L̃4) ∈ V k,1
j,l .

Furthermore, hj,l(L,L, L) = ηj,l, g
1
j,l(L,L, L) = λ+

j,l, g2j,l(L,L, L) = λ−
j,l.
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Proof The sums of holomorphic functions are holomorphic, so H(L̃1, L̃2, L̃4, η̃)
is a holomorphic function. From Lemma 2.2, if ∂H

∂η̃
(L,L, L, ηj,l) 6= 0, there is

an open neighborhood Uj,l = U ′
j,l × U ′′

j,l ⊂ R
3 × C and a holomorphic function

hj,l : U
′
j,l → U ′′

j,l such that

{(L̃1, L̃2, L̃4, η̃) ∈ U ′ × U ′′ : H(L̃1, L̃2, L̃4, η̃) = 0} =ß(
L̃1, L̃2, L̃4, h(L̃1, L̃2, L̃4)

)
: (L̃1, L̃2, L̃4) ∈ U ′

™
,

and hj,l(L,L, L) = η.

We have:

∂H

∂η̃
(L,L, L, ηj,l) =

ηj,l

(
9 sinh(3ηj,lL)× 3L− 3 sinh(−ηj,lL)L− 3 sinh(ηj,lL)L− sinh(ηj,lL)L

)

= ηj,lL
(
27 sinh(3ηj,lL)− sinh(ηj,lL)

)
. (3.22)

Recall that for x ∈ C

®
sinh(3x) = sinh(x)

(
3 + 4 sinh2(x)

)
.

27 sinh(3x)− sinh(x) = sinh(x)(80 + 108 sinh2 x).
(3.23)

While l = 1, due to sinh(ηj,1L) = ±
√
2
3 i, sinh2(ηj,1L) = − 2

9 and (3.23),

∂H

∂η̃
(L,L, L, ηj,1) = ±56

√
2

3
ηj,1Li 6= 0. (3.24)

While l = 2, due to sinh(ηj,2L) = ±i, sinh2(ηj,2L) = −1 and (3.23),

∂H

∂η̃
(L,L, L, ηj,2) = ±28ηj,2Li 6= 0. (3.25)

Then, from Lemma 2.2, we obtain the existence of the holomorphic function
hj,l(L̃1, L̃2, L̃4) with hj,l(L,L, L) = ηj,l.

F (η̃, λ̃) is a holomorphic function. From Lemma 2.2, if ∂F

∂λ̃
(ηj,l, λ

+
j,l) 6= 0,

then there is an open neighborhood W 1
j,l = W 1,1

j,l ×W 1,2
j,l ⊂ C × C and a holo-

morphic function f : W 1,1
j,l → W 1,2

j,l such that

{(η̃, λ̃) ∈ W 1,1
j,l ×W 1,2

j,l : F (η̃, λ̃) = 0} =

ß(
η̃, f1

j,l(η̃)
)
: η̃ ∈ W 1,1

j,l

™

and f1
j,l(ηj,l) = λ+

j,l.
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We compute ∂F

∂λ̃
:

∂F

∂λ̃
= 2(λ+

j,l + ε) 6= 0.

We obtain function f1
j,l(λ̃) : W

1,1
j,l → W 1,2

j,l with f(ηj,l) = λ+
j,l.

The compositions of holomorphic functions are holomorphic. Denote

g1j,l := hj,l ◦ f1
j,l : (hj,l)

−1(U ′′
j,l ∩W 1,1

j,l ) → f1
j,l(U

′′
j,l ∩W 1,1

j,l ).

(hj,l)
−1 is the inverse function of hj,l(L̃1, L̃2, L̃4). g1j,l(L̃1, L̃2, L̃4) is still a holo-

morphic function. Moreover,

g1j,l(L,L, L) = f1
j,l(ηj,l) = λ+

j,l.

Making the same analysis of F (η̃, λ̃) on (ηj,l, λ
−
j,l), we obtain open neighborhoods

W 2,1
j,l ,W

2,2
j,l and holomorphic functions f2

j,l(η̃), g
2
j,l(L̃1, L̃2, L̃4).

Denote the open neighborhood

V s,1
j,l := (hj,l)

−1(U ′′
j,l ∩W s,1

j,l ),

V s,2
j,l := f1

j,l(U
′′
j,l ∩W s,1

j,l ),

V s,3
j,l := U ′′

j,l ∩W s,1
j,l .

j ∈ Z for l = 1 and j ∈ N for l = 2, k = 1, 2. Then we have

V k,1
j,l ⊂ Uj,l, V k,2

j,l ⊂ W k,2
j,l , V k,3

j,l ⊂ U ′′
j,l.

Furthermore, gkj,l(L̃1, L̃2, L̃4) : V
k,1
j,l → V k,2

j,l satisfy:

g1j,l(L,L, L) = λ+
j,l, g2j,l(L,L, L) = λ−

j,l.

With Lemma 3.1, we obtain the following holomorphic functions:

pj,l(r) = hj,l(L+ c1r, L+ c2r, L+ c4r),

qj,l,k(r) = fk
j,l(L+ c1r, L+ c2r, L+ c4r).

The eigenvalues λ̃±
j,l and corresponding ηj,l have the following asymptotic ex-

pansion in the V k
j,l:

η̃j,l = ηj,l +

∞∑

s=1

p
(s)
j,l (0)r

s

λ̃+
j,l = λ+

j,l +

∞∑

s=1

q
(s)
j,l,1(0)r

s

λ̃−
j,l = λ−

j,l +

∞∑

s=1

q
(s)
j,l,2(0)r

s
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We suppose

®
λ̃±
j,l = λ±

j,l + λ±
j,l(1)r + λ±

j,l(2)r
2 + ...

η̃j,l = ηj,l + ηj,l(1)r + ηj,l(2)r
2 + ...

(3.26)

Using (3.14) (3.17) (3.26) and taking the first-order mean approximation, we
have:

ηj,lηj,l(1) = (λ±
j,l + ε)λ±

j,l(1). (3.27)

Notice that if l̃ = l + sr, η̃ = η + η(1)r +O(r2),

eη̃l̃ = eηl+(sη+η(1)l)r+O(r2) = eηl(1 + (sη + η(1)l)r) +O(r2).

Thus,

cosh
Ä
η̃l̃
ä
=

1

2
(eη̃l̃ + e−η̃l̃) = cosh(ηl) + sinh(ηl)(sη + η(1)l)r +O(r2).

Then, using (3.15), (3.21) and (3.26) and taking the first-order mean approxi-
mation, we obtain:

9 sinh(3ηj,lL)
(
3ηj,l(1)L+ ηj,l(c1 + c2 + c4)

)
+

+3 sinh(ηj,lL)
(
ηj,l(1)L+ ηj,l(−c1 + c2 + c4)

)

−3 sinh(ηj,lL)
(
ηj,l(1)L+ ηj,l(c1 + c2 − c4)

)
−

− sinh(ηj,lL)
(
ηj,l(1)L+ ηj,l(c1 − c2 + c4)

)
= 0.

After computation, we have:

0 = ηj,l(1)
(
27 sinh(3ηj,lL)− sinh(ηj,lL)

)
L+

+ηj,l

(
9 sinh(3ηj,lL)(c1 + c2 + c4) + sinh(ηj,lL)(−7c1 + c2 + 5c4)

)
. (3.28)

While l = 1, the equation (3.2) yields:

0 = 128ηj,l(1)L+ ηj,1(27c1 + 45c2 + 54c4). (3.29)

While l = 2, the equation (3.2) yields:

0 = −7ηj,l(1)L− ηj,2(4c1 + 2c2 + c4). (3.30)
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Then, from (3.27), we have:




λ±
j,1(1) =

η2
j,1(27c1+45c2+54c4)

128L(λ±

j,1
+ε)

,

λ±
j,2(1) =

η2
j,2(4c1+2c2+c4)

7L(λ±

j,2
+ε)

.
(3.31)

There exists m1 such that while |m| < m1,

c2 + η2m,1 > 0,

and while |m| ≥ m1

c2 + η2m,1 ≤ 0.

A finite number of eigenvalues (with sufficiently small m) lie on the real axis
and the real part of the other eigenvalues is equal to −ε (large m).

• While |m| < m1, by (3.14),
λ±
m,1 + ε are on the real axis.

λ±
m,1(1) are on the real axis. Recall the proof of Proposition 3.1,

Re(λ±
m,1) < λmin = −ε+

…
c2 − 1

L2
.

Using the continuity of qj,l,k(r), there exists a sufficiently small r1 such
that while |m| < m1, |r| < r1

Re(λ̃±
m,1) <

1

2
λmin < 0.

• While |m| ≥ m1, by (3.14),
λ±
m,1 + ε are on the imaginary axis.

Due to (3.14) (3.17), for higher derivatives λm,1(s), we obtain:

(λ±
m,1 + ε)λ±

m,1(s) +Gs
(
λ±
m,1(1), λ

±
m,1(2), ..., λ

±
m,1(s− 1)

)
=

= Hs
(
ηm,1, ηm,1(1), ηm,1(2), ..., ηm,1(s)

)
. (3.32)

It is an important fact that Gs and F s have a quadratic form.

We claim the following statement and prove it later in Remark 3.1

for all s ∈ N
+, ηm,1(s) are on the imaginary axis. (3.33)

We now use mathematical induction to prove that for s ∈ N
+, λ±

m,1(s) are
on the imaginary axis. Let P (n) be the statement

λ±
m,1(s) are on the imaginary axis for s ≤ n.
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Base case: From (3.31), λ±
m,1(1) is on the imaginary axis, so the state-

ment P (1) holds.

Induction step:
If P (n) holds, Gn+1

(
λ±
m,1(1), λ

±
m,1(2), ..., λ

±
m,1(n)

)
∈ R.

From (3.33), Hs
(
ηm,1, ηm,1(1), ηm,1(2), ..., ηm,1(s)

)
∈ R for all s ∈ N

+.

Recall that λ±
m,1 + ε ( 6= 0) is on the imaginary axis, and from (3.2),

(λ±
m,1 + ε)λ±

m,1(n+ 1) = −Gn+1
(
λ±
m,1(1), ..., λ

±
m,1(n)

)
+

Hn+1
(
ηm,1, ηm,1(1), ..., ηm,1(n+ 1)

)
∈ R.

Thus,

λ±
m,1(n+ 1) =

−Gn+1 +Hn+1

λ±
m,1 + ε

,

is on the imaginary axis.

That is, the statement P (n+1) also holds, establishing the induction step.

Since both the base case and the induction step have been proved as true,
by mathematical induction, the statement P (n) holds for every natural
number n.

Then we have:
Re(λ̃±

m,1) = Re(λ±
m,1) = −ε ≤ 0.

There also exists n1 such that while n < n1, we have c2 + η2n,2 > 0 and while
|n| ≥ n1, we have c2 + η2n,2 ≤ 0. Using similar arguments as in the analysis of

λ̃±
m,1, we obtain the following statements:

• while n < n1, there exists sufficiently small r2 such that

Re(λ̃±
n,2) <

1

2
λmin < 0.

• while n > n1,
Re(λ̃±

n,2) = Re(λ±
n,2) = −ε ≤ 0.

Taking r0 = min{r1, r2}, we know that for all λ̃±
j,l (|j| ∈ Z for l = 1 and j ∈

N for l = 2), if |r| < r0,

Re(λ̃±
j,l) <

1

2
λmin < 0.

The system (3.12) is L2−exponentially stable if r is sufficiently small.

Remark 3.1 For all s ∈ N
+, ηj,l(s) are on the imaginary axis.
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Proof of Remark 3.1

We still use mathematical induction to prove the result. Observing (3.21) and
separately writing the real part and the imaginary part of η(s), η̃, and η:

η̃ = ã+ b̃i,

η = a+ bi,

η(s) = a(s) + b(s)i,

with ã, b̃, a, b, a(k), b(k) ∈ R, the characteristic equation (3.21) yields:

9 cosh
Ä
ãL̂1

ä
cos
Ä
b̃L̂1

ä
+ 3 cosh

Ä
ãL̂2

ä
cos
Ä
b̃L̂2

ä
− 3 cosh

Ä
ãL̂3

ä
cos
Ä
b̃L̂3

ä
−

cosh
Ä
ãL̂4

ä
cos
Ä
b̃L̂4

ä
= −i

(
9 sinh

Ä
ãL̂1

ä
sin
Ä
b̃L̂1

ä
+ 3 sinh

Ä
ãL̂2

ä
sin
Ä
b̃L̂2

ä
−

3 sinh
Ä
ãL̂3

ä
sin
Ä
b̃L̂3

ä
− sinh

Ä
ãL̂4

ä
sin
Ä
b̃L̂4

ä)
. (3.34)

Let Q(n) be the statement:

a(s) = 0 for s ≤ n.

Base case: From the first order approximation before in (3.29) and (3.30), the
numbers ηm(1) are purely imaginary and a(1) = 0. The statement Q(1) holds.

Induction step:
If Q(n) holds,

ã = a(n+ 1)rn+1 +O(rn+2).

Thus,

cos
Ä
b̃l
ä
=cos(bl) cos

( ∞∑

s=1

b(s)rs

)
− sin(bl) sin

( ∞∑

s=1

b(s)rs

)

=cos(bl)− sin(bl)b(1)lr +O(r2),

sin
Ä
b̃l
ä
=sin(bl) cos

( ∞∑

s=1

b(s)rs

)
+ cos(bl) sin

( ∞∑

s=1

b(s)rs

)

=sin(bl) + cos(bl)b(1)lr +O(r2),

and
cosh(ãl) = 1 +O(r2n+2),

sinh(ãl) = a(n+ 1)lrn+1 +O(rn+2).

Taking the n+1-order approximation of the imaginary part of (3.2), we obtain:

a(n+ 1)L
(
27 sin(3bL) + 3 sin(bL)− 3 sin(bL)− sin(bL)

)
b(1) = 0.
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Using a(1) = 0 and (3.23) we obtain:

®
b(1) = −iη(1) 6= 0,

27 sin(3bL)− sin(bL) = −i (27 sinh(3ηL)− sinh(ηL)) 6= 0.

Thus, a(n+1) = 0, which means that the statement Q(n+1) holds, establishing
the induction step.

Since both the base case and the induction step have been proven as true,
by mathematical induction the statement Q(n) holds for every natural number
n.

3.3. Perturbation of control parameter K1

In this section, we want to prove that the system can be stabilized even if
K1 6= 0, but is sufficiently small.

Theorem 3.2 Assume that c > 0 and ε ∈ (0, c). The following system is
exponentially stable if L < Lmin and |K1| is sufficiently small:





uk
tt = uk

xx − 2εuk
t − (ε2 − c2)uk, t ∈ (0,+∞), x ∈ (0, L), k ∈ {1, 2, 3, 4},

u1(t, 0) = u2(t, 0) = u3(t, 0),

u2(t, L) = u3(t, L) = u4(t, L),

Σk=1,2,3u
k
x(t, 0) = 0,

Σk=2,3,4u
k
x(t, L) = 0,

u4(t, 0) = 0,

u1
x(t, L) = K1u

1
t (t, L).

(3.35)

Proof From Remark 2.1, the spectral properties of the system (1.1) directly
determine the growth of the solution.

Let λ̃ ∈ C. We look for a nontrivial solution ‹U(t, x) = (ũ1(t, x), ..., ũ4(t, x))

of the system with the form ũk(t, x) = eλ̃tϕ̃k(x), with the eigenvalue λ̃ of the
system. The corresponding eigenfunctions of the ũk(t, x) are ϕ̃k(x).

Similarly as in the analysis before, such a ‹U(t, x) can only be a solution of the
system if ϕ̃k(x) = R1,ke

η̃x +R2,ke
−η̃x and η̃ satisfy the following characteristic

equation:

[
η̃ cosh(η̃L)

(
−5+9 cosh (2η̃L)

)]
+
[
Λ̃±(η)K1 sinh(η̃L)

(
1+9 cosh (2η̃L)

)]
= 0.

(3.36)
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The function Λ̃±(η) is the solution of λ̃ in the following equation (3.37):

(λ̃+ ε)2 = η̃2 + c2. (3.37)

While K1 = 0, the sequence of η is

{ηj,1|ηj,1 =
1

L
(arctan

…
2

7
+ jπ)i}j∈Z ∪ {ηj,2|ηj,2 = (

jπ + π
2

L
)i}j∈N. (3.38)

The eigenvalues λ±
j,l (j ∈ Z for l = 1 and j ∈ N for l = 2) satisfy

(λ±
j,l + ε)2 = η2j,l + c2. (3.39)

More precisely,

λ+
j,l =

{
−ε+

»
η2j,l + c2, η2j,l + c2 > 0

−ε+
»
−(η2j,l + c2)i, η2j,l + c2 < 0,

λ−
j,l =

{
−ε−

»
η2j,l + c2, η2j,l + c2 > 0

−ε−
»
−(η2j,l + c2)i, η2j,l + c2 < 0.

Furthermore, the characteristic equation is:

η cosh(ηL)
(
− 5 + 9 cosh(2ηL)

)
= 0. (3.40)

Observe that for any ε1 > 0 (that will be determined later) there exists R1,
such that while |η̃| > R1,

|λ̃− η̃| < ε1.

We try to divide the solution of (3.36) into two parts V1 := {λ̃||(λ̃+ ε)2 − c2| >
R2

0} and V2 := {λ̃||(λ̃+ ε)2 − c2| ≤ R2
0} (R0 is decided later).

We use Rouché’s theorem to state that there are only finitely many elements in
the set V1.

Proposition 3.2 If K1 = r is sufficiently small, there is only a finite number
of eigenvalues of the system (3.35) in the set V1 that we have defined above.

Proof Define:

f(η) = η cosh(ηL)
(
− 5 + 9 cosh(2ηL)

)
,

g(η) = Λ̃±(η)r sinh(ηL)
(
1 + 9 cosh(2ηL)

)
,

h(η) = f(η) + g(η).
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We have defined h(η) in such a way that the roots of h(η) are equivalent to
solutions to (3.36) with K1 = r and the roots of f(η) are equivalent to solutions
to (3.40), that is

{0} ∪ {ηj,1|ηj,1 =
1

L
(arctan

…
2

7
+ jπ)i}j∈Z ∪ {ηj,2|ηj,2 = (

jπ + π
2

L
)i}j∈N.

Let T = S(0, R2) = {η| − R2 ≤ Re(η) ≤ R2,−R2 ≤ Im(η) ≤ R2}, with Fig. 2
showing the range of T .

Im(η)

Re(η)R2

R2

−R2

−R2

Figure 3.2: The range of T = S(0, R2)

R2 =

®
R0 + q if there exists j, l such that |ηj,l| = R0,

R0 else.

We take q > 0 as an arbitrary small real number that makes sure |ηj,l| 6= R1+ q
for any j, l. Define

∂T1 = {η|Re(η) = ±R2,−R2 ≤ Im(η) ≤ R2},

∂T2 = {η|Im(η) = ±R2,−R2 ≤ Re(η) ≤ R2}.

We have the following estimation on the boundary ∂T1:

|f(η)| =|η| · | cosh(ηL)| · | − 5 + 9 cosh(2ηL)|
≥ min

η∈∂T1

{|η|} · min
η∈∂T1

{| cosh(ηL)|} · min
η∈∂T1

{| − 5 + 9 cosh(2ηL)|}

≥R2 sinh(R2L)
(
− 5 + 9 cosh(2R2L)

)
> 0, ∀η ∈ ∂T1.
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And

|g(η)| =r · |Λ̃±(η)| · | sinh(ηL)| · |1 + 9 cosh(2ηL)|
≤|r| max

η∈∂T1

{|Λ̃±(η)|} · max
η∈∂T1

{| sinh(ηL)|} · max
η∈∂T1

{|1 + 9 cosh(2ηL)|}

≤|r|(
»

2R2
2 + c2 + ε) cosh(2R2L)

(
1 + 9 cosh(2R2L)

)

<10|r|(
»

2R2
2 + c2 + ε) cosh2(2R2L), ∀η ∈ ∂T1.

Similarly, we have the following estimation on the boundary ∂T2:

|f(η)| =|η| · | cosh(ηL)| · | − 5 + 9 cosh(2ηL)|
≥ min

η∈∂T2

{|η|} · min
η∈∂T2

{| cosh(ηL)|} · min
η∈∂T2

{| − 5 + 9 cosh(2ηL)|}

≥R2| cos(R2L)
(
− 5 + 9 cos(2R2L)

)
| > 0, ∀η ∈ ∂T2.

And

|g(η)| = |r| · |Λ̃±(η)| · | sinh(ηL)| · |1 + 9 cosh(2ηL)|
≤ |r| max

η∈∂T2

{|Λ̃±(η)|} · max
η∈∂T2

{| sinh(ηL)|} · max
η∈∂T2

{|1 + 9 cosh(2ηL)|}

≤ |r|(
»

2R2
2 + c2 + ε)

»
cosh2(2R2L) + sinh2(2R2L)×

×
√(

1 + 9 cosh(2R2L)
)2

+ 81 sinh2(2R2L)

< 20|r|(
»

2R2
2 + c2 + ε) cosh2(2R2L), ∀η ∈ ∂T2.

Taking

q1 = min{R2 sinh(R2L)
(
−5+9 cosh(2R2L)

)
, R2| cos(R2L)

(
−5+9 cos(2R2L)

)
|},

|f(η)| > q1, ∀η ∈ ∂T.

Now, taking r1 < q1

20(
√

2R2
2
+c2+ε) cosh2(2R2L)

, if |r| < r1:

|g(η)| < 20|r|(
»

2R2
2 + c2 + ε) cosh2(2R2L) < q1, ∀η ∈ ∂T,

which means

|f(η)| > q1 > |g(η)| = |h(η)− f(η)|, ∀η ∈ ∂T.

Notice that ∂T is a closed, simple curve (i.e. not self-intersecting). Using
Lemma 2.3, we obtain that f and h have the same number of roots in T .

From the above analysis, there are finite numbers of roots of f(η) in T , thus,
there are finite numbers of roots of h(η) in T . For fixed η̃, there are no more

than two numbers λ̃(Λ̃±
j,l(ηj,l)) that satisfy (3.37).
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Recall that
{
η̃
∣∣ |η̃| < R0, η̃ is the solution of (3.36)

}
⊂ T and, by the defi-

nition of V1, we obtain the result.

For every ηj,l ∈ T , we take a sufficiently small neighbourhood Vj,l of ηj,l, and
upon making the same analysis as in Proposition 3.2, we could obtain only one
root η̃j,l of h(η) in Vj,l. With sufficiently small r (|r| < rj,l), its corresponding

λ̃±
j,l(Λ̃

±
j,l(ηj,l)) still lie on the left half plane. Moreover, observe that f and h

have the same number of roots in T , these η̃j,l are all roots of h(η) in T :

∪{j,l|ηj,l∈T}{η ∈ Vj,l|h(η) = 0} ∪ {0} = {η ∈ T |h(η) = 0}.

From Proposition 3.2, there is a finite number of complex numbers ηj,l in T , so
we have finite numbers of rj,l. Taking |r| < min

{j,l|ηj,l∈T}
{r1, rj,l}, we have:

V1 ⊂ {λ|Re(λ) < 0}.

We then make an analysis of the eigenvalues in V2. Denote:

F (η̃) =
Λ̃±(η)K1

η̃
− 2 + 7 tanh2(η̃L)

tanh(η̃L)
(
5 + 4 tanh2(η̃L)

) .

G(η̃) = K1 +
2 + 7 tanh2(η̃L)

tanh(η̃L)
(
5 + 4 tanh2(η̃L)

) .

Define F (η) in such a way that the roots of F (η̃) are equivalent to solutions to
(3.36).

While |η̃| > R0 and F (η̃) = 0:

|G(η̃)| ≤ |F (η̃)|+ |F (η̃)−G(η̃)| = | (Λ̃
±(η)− η̃)K1

η
| < ε1K1

R2
.

Without loss of generality, we suppose that K1 = r < 1, R2 > 1, then solve
|G(η̃)| < ε1.

• If lim
η→η̃

tanh(ηL) = ∞, that is η̃ =
π
2
+kπ

L
i (k ∈ Z), we have

G(η̃) = r.

• If tanh(η̃L) = ±
»

2
7 i, that is η̃ =

(± arctan
√

2
7
+2kπ)

L
i (k ∈ Z), we have

G(η̃) = r.

Let tanh(η̃L) = y and denote g1(y) :=
2+7y2

5y+4y3 . The inequality yields:

|g1(y) + r| < ε1. (3.41)
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Notice that the roots of the equation g1(y) = 0 are y1 = ∞, y2 =
»

2
7 i, y3 =

−
»

2
7 i.

From the properties of the cubic polynomial, using the implicit function
theorem, we obtain that for any ε2 > 0, there exists δ1 such that

{y ∈ C||g1(y)| ≤ δ1} ⊂ B(y1, ε2) ∪B(y2, ε2) ∪B(y3, ε2).

We now analyze y(s) = tanh(s) near y = y1, y2, y3:

• Let ε2 <

√
2
7

2 be given. If y(s) ∈ B(y2, ε2) ∪ B(y3, ε2), define s2 =

arctan
(»

2
7

)
i, s3 = − arctan

(»
2
7

)
i that satisfy ysi) = yi.

Then we have

| tanh(s− si)| =
| tanh(s)− tanh(si)|
|1− tanh(s) tanh(si)|

≤ ε2
1− | tanh(s)|| tanh(s1)|

≤ ε2

1− 1
7

≤ ε2.

• If y(s) ∈ B(y1, ε2), we define s1 = πi that satisfies y(si) = yi. So, we have

| tanh(s− s1)| =
| tanh(s)− tanh(s1)|
|1− tanh(s) tanh(s1)|

≤ ε2
| tanh(s)|| tanh(s1)| − 1

≤ ε2.

We obtain the following estimation:

Proposition 3.3 If ε2 < 1, z ∈ C satisfies | tanh(z)| ≤ ε2, then we have:

®
z1 ∈ (− tanh−1

(√
2ε2), tanh

−1(
√
2ε2)

)
,

z2 ∈
(
− arctan

Ä√
2ε2
ä
+ kπ, arctan

Ä√
2ε2
ä
+ kπ

)
(k ∈ Z),

where tanh−1(x) is the inverse function of tanh(x).

Proof If z = z1 + z2i ∈ C (z1, z2 ∈ R) satisfies | tanh(z)| < ε2,

tanh(z1 + z2i) =
tanh(z1) + tan(z2)i

1 + tanh(z1) tan(z2)i
,

| tanh(z1 + z2i)|2 =
tanh(z1)

2
+ tan(z2)

2

1 +
(
tanh(z1) tan(z2)

)2 ≤ ε22.

Suppose ε2 < 1, if | tan(z2)| > 1,

| tanh(z1 + z2i)|2 ≥ tan(z2))
2

1 +
(
tanh(z1) tan(z2)

)2 ≥ tan(z2))
2 > 1.
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This contradicts | tanh(z)| < ε2, so we have | tan(z2)| ≤ 1. Then we have

tanh(z1)
2
+ tan(z2)

2 ≤ ε22
(
1 + (tanh(z1) tan(z2))

2
)
≤ 2ε22,

which means that

z1 ∈
(
− tanh−1(

√
2ε2), tanh

−1(
√
2ε2)

)
,

z2 ∈
(
− arctan

Ä√
2ε2
ä
+ kπ, arctan

Ä√
2ε2
ä
+ kπ

)
(k ∈ Z).

For brevity, denote A1 = tanh−1(
√
2ε2), A2 = arctan

Ä√
2ε2
ä
, then we have:

{s ∈ C||g1(tanh(s))| ≤ δ1}
⊂{s ∈ C|y(s) ∈ B(y1, ε2) ∪B(y2, ε2) ∪B(y3, ε2)} ⊂ {s|| tanh(s− si)| ≤ ε2}
⊂{si + z1 + z2i|z1 ∈ (−A1, A1), z2 ∈ (−A2 + kπ,A2 + kπ) , k ∈ Z, i = 1, 2, 3}.

Substituting s = η̃L, and supposing that |r| ≤ δ1
4 , we have:

{η̃||G(η̃)| < δ1
2
} ⊂ {η̃||g1(tanh(η̃L)) ≤ δ1} ⊂

{η̃|y(η̃L) ∈ B(y1, ε2) ∪B(y2, ε2) ∪B(y3, ε2)}

⊂ {si
L

+ z1 + z2i|z1 ∈ (−A1

L
,
A1

L
), z2 ∈ (−A2

L
+ k

π

L
,
A2

L
+ k

π

L
),

k ∈ Z, i = 1, 2, 3}. (3.42)

Recall (3.37), if η̃ = η1 + η2i:

Re(λ̃) = −ε±
 

η21 − η22 + c2 +
√

(η21 − η22 + c2)2 + 4η21η
2
2

2
.

Re(λ̃) < 0 is equivalent to

η21 − η22 + c2 +
√
(η21 − η22 + c2)2 + 4η21η

2
2

2
< ε2,

that is

η21η
2
2 + (η21 − η22 + c2)ε2 < ε4. (3.43)

Recall (3.3), we know that η1 ∈ (−A1

L
, A1

L
), and so, if we take sufficiently small

ε2 such that A1

L
< ε

2 , then (3.43) can be written as follows:

η22 ≥ (c2 − ε2)ε2 + η21ε
2

ε2 − η21
.
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Observing that:

(c2 − ε2)ε2 + η21ε
2

ε2 − η21
=

c2ε2

ε2 − η21
− ε2 ≤ c2 − ε2

if |η̃|2 > c2 − 3
4ε

2, we obtain

η22 = |η̃|2 − η21 > c2 − 3

4
ε2 − 1

4
ε2 = c2 − ε2.

The corresponding Re(λ̃) < 0.

We take sufficiently small ε2 < 1 such that A1

L
≤ ε

2 , then we have the
corresponding δ1.

Taking ε1 = δ1
2 , |r| < ε1

2 , R0 = max{ 4
3c

2− 5
12ε

2, R1}. We obtain that if |η̃| > R0

and F (η̃) = 0, the real part

Re(λ̃) < 0.

In conclusion, while |r| < min{ δ1
4 , r1, rj,l}, the system (1.1) is exponentially

stable.

4. Results on instability

In this section, we prove that for sufficiently large lengths of the edges and
for any K1 ∈ R, there exists an eigenvalue that lies in the right half plane, and
thus system (1.1) with ck = c1 = c, εk = ε1 = ε and Lk = L1 = L cannot be
L2− exponentially stable.

Proposition 4.1 While L ≥ Lmax = π

2
√
c2−ε2

, ck = c1 = c > 0, εk =

ε1 = ε ∈ [0, c) and Lk = L1 = L, for any K1 ∈ R, the system (1.1) is not
L2−exponentially stable.

Proof Let λ ∈ C. We look for a nontrivial solution U(t, x) = (u1(t, x), ..., u4(t, x))
of the system having the form uk(t, x) = eλtϕk(x), with the eigenvalue λ of the
system. The corresponding eigenfunctions of the uk(t, x) are ϕk(x).

Such a U(t, x) can only be a solution of the system if

(λ+ ε)2 ϕk = ϕ′′
k + c2ϕk. (4.1)

From (4.1), we have ϕk(x) = R1,ke
ηx +R2,ke

−ηx and

η2 = (λ+ ε)2 − c2. (4.2)
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Similarly as in the analysis before, using the boundary conditions, we get the
following characteristic equation:
[
η cosh(ηL)

(
−5+9 cosh (2ηL)

)]
+
[
λK1 sinh(ηL)

(
1+9 cosh (2ηL)

)]
= 0. (4.3)

We want to discuss the solution η = ωi (ω ∈ R) on the imaginary axis.
The real part of the corresponding λ is greater than 0 if and only if ω ∈
(−

√
c2 − ε2,

√
c2 − ε2). Moreover,

λ = −ε+
√

c2 − ω2.

We can rewrite the characteristic equation:

−K1 =
ω

−ε+
√
c2 − ω2

(
cot(ωL)

−5 + 9 cos(2ωL)

1 + 9 cos(2ωL)

)
=

ω

−ε+
√
c2 − ω2

× 2− 7 tan2(ωL)

5− 4 tan2(ωL)
cot (ωL). (4.4)

For ω ∈ (−
√
c2 − ε2,

√
c2 − ε2), we define:

F (ω) =
ω

−ε+
√
c2 − ω2

× 2− 7 tan2(ωL)

5− 4 tan2(ωL)
cot (ωL),

f(ω) =
ω√

c2 − ω2 − ε
,

g(ω) =
2− 7 tan2(ωL)

5− 4 tan2(ωL)
cot (ωL).

Figure 3 shows the graphs of f and g.

-3 -2 -1 1 2 3

-15

-10

-5

0

5

10

15

Figure 3: c = 5, ε = 4, L = 1,
√
c2 − ε2 = 3

If we can prove that the range of F (ω) covers R, the system has an eigenvalue
λ > 0 for any K1 ∈ R. Thus, the system cannot be exponentially stable for any
K1 ∈ R.
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We have f ′(ω) =
c2√

c2−ω2
−ε

(
√
c2−ω2−ε)2

> 0, g′(ω) = − 28 tan4(ωL)+11 tan2(ωL)+10
sin2(ωL)(4 tan2(ωL)−5)2

L < 0.

We now discuss the range of F (ω), firstly,

lim
ω→0+

F (ω) = lim
ω→0+

f(ω)g(ω) =
f ′(ω)

(1/g(ω))′
=

1
c−ε

5/2
=

2

5(c− ε)
,

lim
ω→

√
c2−ε2−

F (ω) = lim
ω→

√
c2−ε2−

f(ω)g(ω) = ∞× g(
√

c2 − ε2) = ∞.

As long as
√
c2 − ε2 ≥ π

2L , we define the set of discontinuity points and roots

of F (ω) in [0,
√
c2 − ε2) as χ. We obtain

{ω1, ω2, ω3} ⊂ χ,

that is, the set χ contains at least three elements: ω1 =
arctan

√
2
7

L
, ω2 =

arctan
√

5
4

L
, ω3 = π

2L in χ . Besides,

lim
ω→ω1

F (ω) = lim
ω→ω1

f(ω)g(ω) = f(ω1)× 0 = 0,

lim
ω→ω−

2

F (ω) = lim
ω→ω−

2

f(ω)g(ω) = f(
arctan

»
5
4

L
)× (−∞) = −∞,

lim
ω→ω+

2

F (ω) = lim
ω→ω+

2

f(ω)g(ω) = f(
arctan

»
5
4

L
)×∞ = ∞,

lim
ω→ω−

3

F (ω) = lim
ω→ω−

3

f(ω)g(ω) = f(
π

2L
)× 0 = 0.

From the continuity of F (ω), the range of F (ω) covers R in the interval [ω1, ω2]∪
[ω2, ω3].

In conclusion, while L ≥ Lmax = π

2
√
c2−ε2

, for any K1 ∈ R, the system has

a real eigenvalue that is greater than 0, so it cannot be stabilized.

Remark 4.1 We have the following estimate for L < Lmax = π

2
√
c2−ε2

:

• If
√
c2 − ε2 <

arctan
√

2
7

L
, i.e. L <

arctan
√

2
7√

c2−ε2
, from Proposition 3.1, K1 = 0

can stabilize the system.

• If
arctan

√
2
7

L
<

√
c2 − ε2 <

arctan
√

5
4

L
, the set of discontinuity points and

roots is equal to {ω1}. From the continuity of F (ω), the range of F (ω) is
(−∞, C1),

C1 := inf
ω∈(0,ω1)

F (ω) < ∞.

Hence, the range of F (ω) does not cover R.
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• If
arctan

√
5
4

L
<

√
c2 − ε2 < π

2L , the set of discontinuity points and roots
is equal to {ω1, ω2}. From the continuity of F (ω), the range of F (ω) is
(−∞, C1) ∪ (C2,∞),

C1 := inf
ω∈(0,ω1)

F (ω) < ∞, C2 := sup
ω∈(ω2,

√
c2−ε2)

F (ω) > 0.

We try to make a simulation of F (ω) for a definite case.

Taking c = 5, ε = 4, L = 0.5, we obtain the following Fig. 4 for the graph of
F (ω). It shows that the range of F (ω) does not cover R in this case (C1 < C2).

-3 -2 -1 1 2 3

-20

-10

10

20

Figure 4: F (ω) with c = 5, ε = 4, L = 0.5

Thus, while Lmin < L < Lmax, we cannot prove that for any control K1, the
corresponding system has an eigenvalue bigger than 0. However, the numerical
results indicate that the system can probably not be stabilized by some K1 (see
Section 6, Example 2).

5. Examples

From the stability result in Section 3, we can obtain an explicit expression
of the solutions if K1 = 0 and all arcs have the same length. So, in this section,
we give some results of the explicit solution.
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5.1. Illustration of the eigenfunctions

In this subsection, we present the figures of some of the eigenfunctions in
system (3.1) generated with MATLAB. We take ε = π, c =

√
1.01ε, L = 1,

from (3.8) (3.9) in Proposition 3.1 we can obtain the eigenvalues and the corre-
sponding eigenfuctions. The following figures (Fig. 5) show the eigenfunctions
corresponding to the eigenvalues

λ−
0,1 = −π +

 
1.01π2 − arctan2

…
2

7
, λ−

0,2 = (−1 +
√
0.76)π,

λ−
1,1 = −π +

 
−1.01π2 + (arctan

…
2

7
+ π)2i, λ−

1,2 = −π +
√
1.24πi,

λ−
2,1 = −π +

 
−1.01π2 + (arctan

…
2

7
+ 2π)2i, λ−

2,2 = −π +
√
5.24πi.

5.2. The time–wise evolution of the state

In this subsection, we present solutions of system (3.1) generated with MAT-
LAB for some special initial values. We also give some figures which show the
evolution of the L2-norm energy over time.

We take ε = π, c =
√
1.01ε, and from Theorem 1.1 we obtain the critical

length

L0 =
arctan

»
2
7√

c2 − ε2
≈ 1.5625.

While L < L0, the system is exponentially stable, and while L > L0, the
system is not exponentially stable. We take L1 = 1 < L0 and L2 = 2 > L0 with
the same initial value (IV1),





uk(0, x) = Im
( ∑
0≤j≤49

ϕj,1
k (x) + ϕj,2

k (x)
)
,

uk
t (0, x) = Im

( ∑
0≤j≤49

ϕj,1
k (x) + ϕj,2

k (x)
)
, k ∈ {1, 2, 3, 4},

(IV1)

i.e. cm,j,l =

®
1, 0 ≤ j ≤ 49, m = 1, 2, l = 1, 2

0, else
, ϕj,l

k (x) is defined before in

(3.9).

From (3.10) in Section 3, we obtain that the explicit solution of the system
(3.1) is
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Figure 5.1.: The eigenfunction ϕ
−

0,1(x) Figure 5.2: The eigenfunction ϕ
−

0,2(x)

Figure 5.3: The eigenfunction ϕ
−

1,1(x) Figure 5.4: The eigenfunction ϕ
−

1,2(x)

Figure 5.5: The eigenfunction ϕ
−

2,1(x) Figure 5.6: The eigenfunction ϕ
−

2,2(x)

uk(t, x) =
∑

l=1,2

Im
[ 49∑

j=0

( −λ+
m,1

λ+
m,1 − λ−

m,1

eλ
+

m,1t +
λ−
m,1

λ+
m,1 − λ−

m,1

eλ
−

m,1t
)
ϕj,l
k (x)

]
,

k ∈ {1, 2, 3, 4}.

The time evolution of the network can be shown in Figs. 6 and 7 generated
by MATLAB. The initial data used for Figs. 6 and 7 contain highly oscillatory
parts that vanish rather quickly with time.

We also present the variation of the L2-energy for both two values in Figure
8 (L = 1) and Figure 9 (L = 2):
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Figure 6: The time evolution (from left to right and then from up to down) of
the network with the initial value (IV1) and ε = π, c =

√
1.01π, L = 1
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Figure 7: The time evolution (from left to right and then from up to down) of
the network with the initial value (IV1) and ε = π, c =

√
1.01π, L = 2
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0 25 50 75 100
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10
-4

10
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10
0

Figure 8: The L2-energy of the network under the time evolution with the
initial value (IV1) K1 = 0, L = 1, T = 100

0 20 40 60 80 100

10
-2

10
-1

10
0

Figure 9: The L2-energy of the network under the time evolution with the
initial value (IV1) K1 = 0, L = 2, T = 100

6. Simulations

In this section, we present some numerical results generated with MATLAB
of the upwind implicit scheme for the system (1.1). Gugat and Gerster in (2019)
also use the upwind scheme for simulations for the star-shaped system.
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We first use the variable substitution vi = − 1
ci
(ui

x+ui
t+ εiu

i) to rewrite the
system as a 2× 2 system:





U i
t +AU i

x +BiU i = 0, t ∈ (0,+∞), x ∈ [0, Li], i ∈ {1, 2, 3, 4},
u1(t, 0) = u2(t, 0) = u3(t, 0),

u2(t, L2) = u3(t, L3) = u4(t, L4),

Σk=1,2,3u
k
x(t, 0) = 0,

Σk=2,3,4u
k
x(t, Lk) = 0,

u4(t, 0) = 0,

u1
x(t, L1) = −K1v

1(t, L1),

(6.1)

with U i = (ui, vi)T , A =

Å
1 0
0 −1

ã
, Bi =

Å
εi ci
ci εi

ã
.

For numerical illustrations, each arc [0, Li] is divided into Ji cells by a space
discretization ∆x > 0 such that ∆xJi = Li with cell centers xj := (j − 1

2 )∆x
for j = 1, 2, ..Ji. Ghost cells with centers x0 and xJi+1 are added outside the
domain. The discrete time steps are denoted as tk := k∆t for k ∈ N and ∆t > 0
such that the CFL-condition holds. Cell averages at tk are approximated by

uk,i
j ≈

∫ x
j+1

2

x
j− 1

2

ui(tk, x)dx, vk,ij ≈
∫ x

j+1
2

x
j− 1

2

vi(tk, x)dx.

The advection part can be approximated by the left and right-sided upwind
scheme and the reaction part by an implicit Euler step that takes the charac-
teristic speeds into account, i.e.

uk+1,i
j = uk,i

j − ∆t

∆x
(uk+1,i

j − uk+1,i
j−1 )−∆t(εuk+1,i

j + cvk+1,i
j ),

vk+1,i
j = vk,ij +

∆t

∆x
(vk+1,i

j+1 − vk+1,i
j )−∆t(cuk+1,i

j + εvk+1,i
j ).

In order to successfully use the upwind scheme, we use ghost grid point
uk,i
0 , vk,i0 , uk,i

J+1, v
k,i
J+1 to apply the boundary condition:

ui(tk, 0) =
uk,i
0 + uk,i

1

2
, ∂xu

i(tk, 0) =
uk,i
1 − uk,i

0

∆x
,

∂tu
i(tk, 0) =

uk+1,i
0 + uk+1,i

1 − uk+1,i
0 − uk+1,i

1

2∆t
,

ui(tk, L) =
uk,i
J + uk,i

J+1

2
, ∂xu

i(tk, L) =
uk,i
J+1 − uk,i

J

∆x
,

∂tu
i(tk, L) =

uk+1,i
J+1 + uk+1,i

J − uk+1,i
J+1 − uk+1,i

J

2∆t
.
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All simulations are done in MATLAB. The space discretization ∆x = 200
and the CFL-condition 0.99 are used. For our cases, Theorem 1.1 shows that
while K1 = 0, ε = π, c =

√
1.01π, as stated in Section 5, the system is exponen-

tially stable with Li = L (i = 1, 2, 3, 4).

The time evolution of the network is shown in Fig. 10, generated by MAT-
LAB with the initial value (IV2),





u1(0, x) = −4 sin
(
π
2x
)
,

ui(0, x) = 2 sin
(
π
2x
)
, i ∈ {2, 3, 4},

uk
t (0, x) = 0, k ∈ {1, 2, 3, 4}.

(IV2)

Figure 10: The time evolution of the network with the initial value (IV2)
ε = π, c =

√
1.01π, L = 1

Green line: Numerical simulation result Red line: Exact solution
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From the figure we can observe that the simulation result of the scheme is
quite good. We then present the time evolution of the network concerning the
L2-norm for both stability and instability cases in the following figure. Stability
is measured in the L2-norm

L2(tk) :=

4∑

i=1

Ji+1∑

j=0

[(uk,i
j )2 + (vk,ij )]2.

Example 1

We normalize the initial L2 energy as 1. We take ε = π, c =
√
1.01π,

Theorem 1.1 gives us the Lmin = 1.5625, Lmax = 5. The time evolution of the
log of L2-energy of the networks with different length of the arcs can be shown
in Figure 6.2 for K1 = 0, 1, 20. We take the initial value:





u1(0, x) = sin
(
πx
L

)
+ π

L
x,

u2(0, x) = u3(0, x) = − sin
(
πx
L

)
,

u4(0, x) = − 2π
L
x,

uk
t (0, x) = 0, k ∈ {1, 2, 3, 4}.

(6.2)

The numerical results indicate that if there exists a critical length Lc that
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(a) L1 = 1 < Lmin

0 100 200 300 400 500
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0

5

(b) L2 = 3 ∈ (Lmin, Lmax)
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0

2
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(c) L3 = 6 > Lmax

Figure 11 The time evolution of the log of L2-energy with different
lengths of the arcs

determines the stabilizability of the system, it is likely that it is equal Lmin.

Example 2

We take ε = 4, c = 5. Fig. 4 in Remark 4.1 shows that if L = 1
2 , we cannot

prove the existence of an eigenvalue λ with positive real part if K1 ∈ (0.8, 5.0).
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We have tried to make the simulation for K1 ∈ {0.9, 1, 2, 3, 4, 4.5} with the
initial data (6.2).

However, since the five lines, representing the time evolution of the L2-energy
on the network are too close and all increasing, we only present the logarithm
of the energy for K1 = 3 in Fig. 12.

0 20 40 60 80 100

0

50

100

150

200

Figure 12: c = 5, ε = 4, L = 1
2 , K1 = 3

The numerical results show that the system is not exponentially stable even if
we cannot theoretically prove there exists an eigenvalue in the right part of the
plane.

7. Conclusion

We have discussed the limits of stabilization of a networked hyperbolic sys-
tem with a circle that is governed by a wave equation with nondissipative source
terms depending on the position and the velocity. If the lengths of the arcs are
small enough, the system is exponentially stable with the control parameter |K1|
sufficiently small if the arcs in cycle have the same length. Similar to the exam-
ple presented by Bastin and Coron (2016), the system cannot be exponentially
stable for any feedback parameters if the length of arcs is sufficiently large. For
stability, we have proven that the lengths of arcs could be slightly different from
each other. If we have no restriction on the length of arcs, the complexity of
the characteristic equation leads to additional difficulties in spectral analysis.

For our future research we are interested in the existence of the critical
length to precisely separate the domains of stability and instability. Moreover,
it is interesting to consider more general graphs, for example a cycle made from
three edges and three attached single links. This topic is linked to the analysis
in Leugering and Sokolowski (2008), where the elliptic case has been consid-
ered, see also Gugat, Qian and Sokolowski (2023) for the topological derivative
method for control of wave equation on networks. A disadvantage of the spectral
approach is that for more complex graphs also the spectral equations become
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more complicated. Therefore, it would be useful to have a simpler method for
the general case, even if it would provide only less precise results. We clearly
expect that also for more general graphs there exists a limit of stabilizability.

Another approach to extend the analysis is to allow for additional feedback
control applied to the Kirchhoff conditions to improve the stability, similarly as
in Avdonin, Edward and Leugering (2023). Since additional feedback control
action would improve the stability of the system, we expect that in this case
also systems with graphs with several intertwined cycles could be stabilized with
suitable feedback parameters at all interior nodes.

Also an analysis of the exponential stability with respect to the H2-norm
would be of interest (see, e.g., Hayat, 2019; Hayat and Shang, 2021): Does this
change the critical length where stabilization is impossible compared with the
L2-case?
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