PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal estimation of a subset of integers with application to GNSS

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of integer or mixed integer/real valued parameter estimation in linear models is considered. It is a well-known result that for zero-mean additive Gaussian measurement noise the integer least-squares estimator is optimal in the sense of maximizing the probability of correctly estimating the full vector of integer parameters. In applications such as global navigation satellite system ambiguity resolution, it can be beneficial to resolve only a subset of all integer parameters. We derive the estimator that leads to the highest possible success rate for a given integer subset and compare its performance to suboptimal integer mappings via numerical studies. Implementation aspects of the optimal estimator as well as subset selection criteria are discussed.
Rocznik
Strony
123--134
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Technische Universität München (TUM), Munich, Germany Institute for Communications and Navigation
Bibliografia
  • Agrell E., Eriksson T., Vardy A., Zeger K. (2002) Closest Point Search in Lattices, IEEE Transactions on Information Theory, Vol. 48, No. 8, 2201-2214.
  • Babai L. (1986) On Lov´asz Lattice Reduction and the Nearest Lattice Point Problem, Combinatorica, Vol. 6, No. 1, 1-13.
  • Blewitt G. (1989) Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km, Journal of Geophysical Research: Solid Earth, Vol. 94, No. B8, 10187-10203.
  • Brack A. (2015) On reliable data-driven partial GNSS ambiguity resolution, GPS Solutions, Vol. 19, No. 3, 411-422.
  • Brack A. (2016) Partial Ambiguity Resolution for Reliable GNSS Positioning - a Useful Tool?, Proc. IEEE Aerospace Conference 2016, Big Sky, USA.
  • Brack A., G¨unther C. (2014) Generalized integer aperture estimation for partial GNSS ambiguity fixing, Journal of Geodesy, Vol. 88, No. 5, 479-490.
  • Euler H.J., Goad C.C. (1991) On optimal filtering of GPS dual frequency observations without using orbit information, Bulletin G´eod´esique, Vol. 65, No. 2, 130-143.
  • Hatch R.R. (1982) The synergism of GPS code and carrier measurements, Proc. of the 3rd Int. Symp. on Satellite Doppler Positioning 1982, Las Cruces, USA, 1213-1231.
  • Jazaeri S., Amiri-Simkooei A., Sharifi M.A. (2014) On lattice reduction algorithms for solving weighted integer least squares problems: comparative study, GPS Solutions, Vol. 18, No. 1, 105-114.
  • Khanafseh S., Pervan B. (2010) New Approach for Calculating Position Domain Integrity Risk for Cycle Resolution in Carrier Phase Navigation Systems, IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 1, 296-307.
  • Nardo A., Li B., Teunissen P.J.G. (2016) Partial Ambiguity Resolution for Ground and Space-Based Applications in a GPS+Galileo scenario: A simulation study, Advances in Space Research, Vol. 57, No. 1, 30-45.
  • Odijk D., Arora B.S., Teunissen P.J.G. (2014) Predicting the Success Rate of Longbaseline GPS+Galileo (Partial) Ambiguity Resolution, Journal of Navigation, Vol. 67, No. 3, 385-401.
  • Teunissen P.J.G. (1993) Least-squares estimation of the integer GPS ambiguities, Invited lecture, section IV theory and methodology, IAG general meeting 1993, Beijing, China.
  • Teunissen P.J.G. (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, Journal of Geodesy, Vol. 70, No. 1-2, 65-82.
  • Teunissen P.J.G. (1998) Success probability of integer GPS ambiguity rounding and bootstrapping, Journal of Geodesy, Vol. 72, No. 10, 606-612.
  • Teunissen P.J.G. (1999) An optimality property of the integer least-squares estimator, Journal of Geodesy, Vol. 73, No. 11, 587-593.
  • Teunissen P.J.G. (2003) On the computation of the best integer equivariant estimator, Artificial Satellites, Vol. 40, No. 3, 161-171.
  • Teunissen P.J.G., Joosten P., Tiberius C.C.J.M. (1999) Geometry-free ambiguity success rates in case of partial fixing, Proc. ION NTM 1999, San Diego, USA, 201-207.
  • Verhagen S., Li B., Teunissen P.J.G. (2013) Ps-LAMBDA: Ambiguity success rate evaluation software for interferometric applications, Computers & Geosciences, Vol. 54, 361-376.
  • Verhagen S., Teunissen P.J.G., van der Marel H., Li B. (2011) GNSS ambiguity resolution: which subset to fix, Proc. IGNSS Symposium 2011, Sydney, Australia.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a4c5169-e4e8-4174-890b-320144179395
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.