PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New ichnotaxa of vertebrate burrows from the Salt Wash Member, Upper Jurassic Morrison Formation, south-eastern Utah (USA)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Large-diameter burrows in pedogenically modified floodplain deposits in the Salt Wash Member, Upper Jurassic Morrison Formation, southeast Utah, U.S.A., are interpreted to have been constructed by mammals. They are distinguished as Daimonelix martini isp. nov., which exhibits a helical shaft down to a horizontal tunnel with a mean depth of 71.4 cm from the inferred palaeosurface. The mean path length of the shaft is 99.4 cm; mean dip of the whorls is 39°. The mean tunnel length is 42.3 cm. Shafts and tunnels are oval or elliptical in cross section with the horizontal diameter slightly larger than the vertical (ratio of -1.26:1); the shaft averages 9.2 cm wide and 7.3 cm tall; the tunnel averages 10.7 cm wide and 10.7 cm tall. The tracemaker was likely a fossorial mammal that used the burrow as a den to shelter when not foraging above ground; the burrows are domichnia. The other from the same member is Fractisemita henrii igen. nov. et isp. nov., a network of interconnected shafts and tunnels; shaft and tunnel segments are straight, curved, or helical. The segments are at angles of 0-89°; mean length of a section is 30.7 cm. The cross sections of all elements are oval or elliptical; the mean width is 6.3 cm and the mean height is 4.9 cm (ratio of -1.29:1). The burrows are interpreted as the work of a social mammal and represent multiple tracemaker behaviours: protection, denning, foraging, and possibly food storage. The burrows are polychresichnia. Surficial morphologic features preserved on the burrow walls of both types are interpreted as scratches made by the tracemaker claws and/or teeth. The burrows reveal the actions of small vertebrates not recorded by body fossils showing potential partitioning of the environment and availability of resources for small vertebrates.
Rocznik
Strony
181--202
Opis fizyczny
Bibliogr. 110 poz., rys., tab.
Twórcy
  • Department of Geology, University of Kansas, 1475 Jayhawk Blvd., rm 215, Lawrence, Kansas, 66045
  • Department of Geology, University of Kansas, 1475 Jayhawk Blvd., rm 215, Lawrence, Kansas, 66045
Bibliografia
  • 1. Adams, A. M., Marais, E., Turner, J. S., Prendini, L. & Pinshow, B., 2016. Similar burrow architecture of three arid-zone scorpion species implies similar ecological function. The Nature of Science, 103(56): 1-11. DOI 10.1007/s00114-016-1374-z.
  • 2. Allen, D. C., Wynn-Thompson, T. M., Kopp, D. A. & Cardinale, B. J., 2018. Riparian plant biodiversity reduces stream channel migration rates in three rivers in Michigan, U.S.A. Ecohydrology, 2018:11:e1972; doi.org/10.1002/eco.1972.
  • 3. Ash, S. R. & Tidwell, W. D., 1998. Plant megafossils from the Brushy Basin Member of the Morrison Formation near Montezuma Creek Trading Post, southeastern Utah. Modern Geology, 23: 321-339.
  • 4. Barbour, E. H., 1892. Notes on a new order of gigantic fossils. University Studies (University of Nebraska), 1: 301-313.
  • 5. Barbour, E. H., 1894. Additional notes on the new fossil Daimonelix. Its mode of occurrence, its gross and minute structure. University Studies (University of Nebraska), 1: 1-16.
  • 6. Barbour, E. H., 1895. Is Daemonelix a burrow? A reply to Dr. Theodor Fuchs. The American Naturalist, 29: 517-527.
  • 7. Barbour, E. H., 1896. Progress made in the study of Daemonelix. Nebraska Academy of Science, 1894-1895: 24-28.
  • 8. Barbour, E. H., 1897. Nature, structure, and phylogeny of Daemonelix. Geological Society of America Bulletin, 8: 305-314.
  • 9. Barbour, E. H., 1903. Present knowledge of the distribution of Daimonelix. Science, 18(459): 504-505.
  • 10. Bennett, N. C., Jarvis, J. U. M. & Davies, K. C., 1988. Daily and seasonal temperatures in the burrows of African rodent moles. African Zoology, 23: 189-195.
  • 11. Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikuláš, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Shlirf, M. & Uchman, A., 2006. Names for trace fossils: a uniform approach. Lethaia, 39: 265-286.
  • 12. Bordy, E. M. & Krummeck, W. D., 2016. Enigmatic continental burrows from the early Triassic transition of the Katberg and Burgersdorp Formations in the main Karoo Basin, South Africa. Palaios, 31: 389-403.
  • 13. Bordy, E. M., Sciscio, L., Abdala, F., McPhee, B. W. & Choiniere, J. N., 2017. First Lower Jurassic vertebrate burrow from southern Africa (upper Elliot Formation, Karoo Basin, South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 468: 362-372.
  • 14. Bown, T. M. & Kraus, M. J., 1983. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 43: 95-128.
  • 15. Bown, T. M. & Kraus, M. J., 1987. Integration of channel and floodplain suites, I. Developmental sequence and lateral relations of alluvial paleosols. Journal of Sedimentary Petrology, 57: 587-601.
  • 16. Butler, D. R., 1995. Zoogeomorphology: Animals as Geomorphic Agents. Cambridge University Press, New York, 231 pp.
  • 17. Chin, K. & Kirkland, J. I., 1998. Probable herbivore coprolites from the Upper Jurassic Mygatt-Moore Quarry, western Colorado. Modern Geology, 23: 249-275.
  • 18. Colombi, C. E., Fernandez, E., Currie, B. S., Alcober, O. A., Martinez, R. & Correa, G., 2012. Large-diameter burrows of the Triassic Ischigualasto Basin, NW Argentina: paleoecological and paleoenvironmental implications. PLoS ONE, 7, e50662,oi:10.1371/journal.pone.0050662.
  • 19. Cope, E. D., 1893. A supposed new order of gigantic fossil from Nebraska. American Naturalist, 27: 559-569.
  • 20. Doody, J. S., James, H., Ellis, R., Gibson, N., Raven, M. & Mahony, S., 2014. Cryptic and complex nesting in the yellow-spotted monitor, Varanus panoptes. Journal of Herpetology, 48: 363-370.
  • 21. Doody, J. S., James, H., Colyvas, K., McHenry, C. R. & Clulow, S., 2015. Deep nesting in a lizard, déjá vu devil’s corkscrew: first helical reptile burrow and deepest vertebrate nest. Biological Journal of the Linnean Society, 116: 13-26.
  • 22. Duncan, P. & Wrangham, R. W., 1971. On the ecology and distribution of subterranean insectivores in Kenya. Journal of Zoology, 164: 149-163.
  • 23. Dworschak, P. C. & Rodrigues, S. D. A.1997. A modern analogue for the trace fossil Gyrolithes: burrows of the thalassinidean shrimp Axianassa australis. Lethaia, 30: 41-52.
  • 24. Fernandez, V., Abdala, F., Carlson, K. J., Rubidge, B. S., Yates, A. & Tafforeau, P., 2013, Synchrotron reveals Early Triassic odd couple: injured amphibian and aestivating therapsid share burrow: PLoS One, 8, e64978, doi.org/10.1371/journal. pone.0064978.
  • 25. Foster, J. R., 2007. Jurassic West: The Dinosaurs of the Morrison Formation and their World. Bloomington, Indiana University Press, 389 pp.
  • 26. Foster, J. R., 2009. Preliminary body mass estimates for mammalian genera of the Morrison Formation (Upper Jurassic, North America). PaleoBios, 28: 114-122.
  • 27. Friedman, M. & Daeschler, E. B., 2006. Late Devonian (Famennian) lungfishes from the Catskill Formation of Pennsylvania, USA. Palaeontology, 49: 1167-1183.
  • 28. Gates, T. A., 2005. The Late Jurassic Cleveland-Lloyd Dinosaur Quarry as a drought-induced assemblage. Palaios, 20: 363-375.
  • 29. Gobetz, K. E., 2006. Possible burrows of mylagaulids (Rodentia: Aplodontoidea: Mylagaulidae) from the late Miocene (Barstovian) Pawnee Creek Formation of northeastern Colorado. Palaeogeography, Palaeoclimatology, Palaeoecology, 237: 119-136.
  • 30. Gobetz, K. E. & Martin, L. D., 2006. Burrows of a gopher-like rodent, possibly Gregorymys (Geomyoidea: Geomyidae: Entoptychtinae), from the early Miocene Harrison Formation, Nebraska. Palaeogeography, Palaeoclimatology, Palaeoeco- logy, 237: 305-314.
  • 31. Groenwald, G. H., Welman, J. & MacEachern, J. A., 2001. Vertebrate burrow complexes from the early Triassic Cynognathus Zone (Driekoppen Formation, Beaufort Group) of the Karoo Basin, South Africa. Palaios, 16: 148-160.
  • 32. Gurnell, A., 2014. Plants as river system engineers. Earth Surface Processes and Landforms, 39: 4-25.
  • 33. Halfen, A. F. & Hasiotis, S. T., 2010a. Downward thinking: Rethinking the “Up” in soil bioturbation. In: Gilkes, R. J. & Prakongkep, N. (eds), Proceedings of the 19th World Soil Congress. Australian Society of Soil Science Incorporated, Brisbane, Queensland, Australia, pp. 21-24.
  • 34. Halfen, A. F. & Hasiotis, S. T., 2010b. Neoichnological study of the traces and burrowing behaviors of the western harvester ant Pogonomyrmex occidentalis (Insecta: Hymenoptera: Formicidae): Paleopedogenic and paleoecological implications. Palaios, 25: 703-720.
  • 35. Hall, L. S. & Meyers, K., 1978. Variations in the microclimate in rabbit warrens in semi arid New South Wales. Australian Journal of Ecology, 3: 187-194.
  • 36. Häntzschel, W., 1975. Trace fossils and Problematica (2nd edition). In: Teichert, C. (ed.), Treatise on Invertebrate Paleontology, Part W. Miscellanea, Suppl. 1. Geological Society of America, Boulder, Colorado, and University of Kansas Press, Lawrence, Kansas, 269 pp.
  • 37. Hauge, E. A., Millsap, B. A. & Martell, M. S., 1993. Burrowing owls (Speotyto cunicularia). In: Poole, A. & Gill, F. (eds), The Birds of North America, No. 61. Academy of Natural Sciences, Philadelphia, pp. 1-20.
  • 38. Hasiotis, S. T., 2002. Continental Trace Fossils. SEPM Short Course Notes 51, Tulsa, 132 pp.
  • 39. Hasiotis, S. T., 2003. Complex ichnofossils of solitary and social soil organisms: understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 192: 259-320.
  • 40. Hasiotis, S. T., 2004. Reconnaissance of Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses: Sedimentary Geology, 167: 177-268.
  • 41. Hasiotis, S. T., 2008. Reply to the Comments by Bromley et al. of the paper “Reconnaissance of the Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region. USA: Paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sedimentary Geology, 208: 61-68.
  • 42. Hasiotis, S. T. & Bourke, M. C., 2006. Continental trace fossils and museum exhibits: displaying burrows as organism behaviour frozen in time. The Geological Curator, 8: 211-226.
  • 43. Hasiotis, S. T. & Mitchell, C. E., 1993. A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos, 2: 291-314.
  • 44. Hasiotis, S. T., Mitchell, C. E. & Dubiel, R. F., 1993. Application of morphologic burrow interpretations to discern continental burrow architects: lungfish or crayfish? Ichnos, 2: 315-333.
  • 45. Hasiotis, S. T., Wellner, R. W., Martin, A. J. & Demko, T. M., 2004. Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: their paleoenvironmental and paleoecological significance. Ichnos, 11: 103-124.
  • 46. Hasiotis, S. T., Platt, B. F., Hembree, D. I. & Everhart, M. J., 2007. The trace-fossil record of vertebrates. In: Miller, W., III (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier Press, Amsterdam, pp. 196-218.
  • 47. Hembree, D. I. & Hasiotis, S. T., 2006. The identification and interpretation of reptile ichnofossils in paleosols through modern studies. Journal of Sedimentary Research, 76: 575-588.
  • 48. Hembree, D. I. & Hasiotis, S. T., 2008. Miocene vertebrate and invertebrate burrows defining compound paleosols in the Pawnee Creek Formation, Colorado, U.S.A. Palaeogeography Palaeoclimatology, Palaeoecology, 270: 349-365.
  • 49. Hickman, G. C., 1983. Influence of the semi-aquatic habit in determining burrow structure of the star-nosed mole (Condylura cristata). Canadian Journal of Zoology, 61: 1688-1692.
  • 50. Hobbs, H. H. Jr., 1981. The crayfishes of Georgia. Smithsonian Contributions to Zoology, 318: 549 pp.
  • 51. Hubbard, S. M., Gingras, M. K. & Pemberton, S. G., 2004. Pala- eoenvironmental implications of trace fossils in estuarine deposits of the Cretaceous Bluesky Formation, Cadotte region, Alberta, Canada. Fossils and Strata, 51: 61-87.
  • 52. Joeckel, R. M. & Tucker, S. T., 2013. Exceptionally well preserved latest Miocene (Hemphillian) rodent burrows from the eastern Great Plains, United States, and a review of the burrows of North American rodents. Palaios, 28: 793-824.
  • 53. Jones, C. G., Lawton, J. H. & Shachak, M., 1994. Organisms as ecosystem engineers. Oikos, 69: 373-386.
  • 54. Kautz, T., 2015. Research on subsoil biopores and their functions in organically managed soils: A review. Renewable Agriculture and Food Systems, 30: 318-327.
  • 55. Kautz, T., Athmann, M. & Köpke, U., 2014. Growth of barley (Hordeum vulgare L.) roots in biopores with differing carbon and nitrogen contents. Building Organic Bridges, 2: 391-394.
  • 56. Kay, F. R. & Whitford, W. G., 1978. The burrow environment of the banner-tailed kangaroo rat, Dipodomys spectabilis, in south-central New Mexico. The American Midland Naturalist, 99: 270-279.
  • 57. Kenagy, G. J., 1973. Daily and seasonal patterns of activity and energetics in a heteromyid rodent community. Ecology, 54: 1201-1219.
  • 58. Kielan-Jaworowska, Z., Cifelli, R. L. & Luo, Z., 2004. Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. Columbia University Press, New York, 630 pp.
  • 59. King, J. A., 1955. Social behavior, social organization, and population dynamics in a black-tailed prairie-dog town in the Black Hills of South Dakota. Contributions from the Laboratory of Vertebrate Biology, 67: 124 pp.
  • 60. Kinlaw, A., 1999. A review of burrowing by semi-fossorial vertebrates in arid environments. Journal of Arid Environments, 41: 127-145.
  • 61. Kjemperud, A.V., Schomacker, E. R. & Cross, T. A., 2008. Architecture and stratigraphy of alluvial deposits, Morrison Formation (Upper Jurassic), Utah. AAPG Bulletin, 92: 1055-1076.
  • 62. Krapovickas, V., Mancuso, A. C., Marsicano, C. A., Domnanovich, N. S. & Schultz, C. L., 2013. Large tetrapod burrows from the Middle Triassic of Argentina: a behavioural adaptation to seasonal semi-arid climate? Lethaia, 46: 154-169.
  • 63. Laing, B. A., Buatois, L. A., Mángano, M. G., Narbonne, G. M. & Gougeon, R. C., 2018. Gyrolithes from the Ediacaran-Cambrian boundary section in Fortune Head, Newfoundland, Canada: Exploring the onset of complex burrowing. Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 171-185.
  • 64. Lanés, S., Mancefiido, M. & Damborenea, S., 2007. Lapispira: A double helicoidal burrow from Jurassic marine nearshore environments. In: Bromley, R. G., Buatois, L. A., Mángano, M. G., Genise, J. F. & Melchor, R. N. (eds), Sediment-Organism Interactions: A Multifaceted Ichnology. Society of Economic Palentologists and Mineralogists (Society for Sedimentary Geology) Special Publications, 88: 59-77.
  • 65. Lockley, M., Hunt, A., Conrad, K., Robinson, J., 1992. Tracking dinosaurs and other extinct animals at Lake Powell. Park Science, 12: 16-17.
  • 66. Lovegrove, B. G., 1989. The cost of burrowing by the social mole rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: the role of soil moisture. Physiological Zoology, 62: 449-469.
  • 67. Lovegrove, B. G. & Jarvis, J. U. M., 1986. Coevolution between mole-rats (Bathyergidaae) and a geophyte, Micranthus (Iridaceae). Cimbebasia, 8: 79-85.
  • 68. Lugn, A. L., 1941. The origin of Daemonelix. Journal of Geology, 49: 673-696.
  • 69. Luo, Z. & Wible, J. R., 2005. A Late Jurassic digging mammal and early mammalian diversification. Science, 308: 103-107.
  • 70. Luo, Z., Meng, Q., Ji, Q., Liu, D., Zhang, Y. & Neander, A. I., 2015. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science, 347: 760-764.
  • 71. Mankin, P. C. & Getz, L. L., 1994. Burrow morphology as related to social organization of Microtus ochrogaster. Journal of Mammalogy, 75: 492-499.
  • 72. Martin, L. D., 1987. Beavers from the Harrison Formation (early Miocene) with a revision of Euhapsis. Dakoterra, 3: 73-91.
  • 73. Martin, L. D. & Bennett, D. K., 1977. The burrows of the Miocene beaver Palaeocastor, Western Nebraska, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 22: 173-193.
  • 74. Mayoral, E., 1986. Gyrolithes vidali nov. ichnoesp. (Plioceno marino) en el sector Surocciedental de la Cuenca del Guadalquivir (Area de Palos de la Frontera, Huelva, Espafia). Estudios Geológicos, 42: 211-223.
  • 75. Mayoral, E., and Muňiz, F. 1995. Nueva ichnoespecie de Gyrolithes de Mioceno Superior de la Cuenca del Guadalquivir (Lepe, Huelva). Revista Espanola de Paleontologia, 10: 190-201.
  • 76. Mayoral, E., and Muniz, F. 1998. Nueva datos icnotaxonomicos sobre Gyrolithes del Plioceno Inferior de la Cuenca del Guadalquivir (Lepe, Huelva, Espana). Revista Espanola de Paleontologia, 13: 61-69.
  • 77. McCahon, T. J. & Miller, K. B., 2015. Environmental significance of lungfish burrows (Gnathorhiza) within Lower Permian (Wolfcampian) paleosols of the US Midcontinent. Palaeogeography, Palaeoclimatology, Palaeoecology, 435: 1-12.
  • 78. McKenna, M. C. & Bell, S. K., 1997. Classification of Mammals above the Species Level. Columbia University Press, New York, 631 pp.
  • 79. Meyer, R. C., 1999. Helical burrows as a palaeoclimate response: Daimonelix by Palaeocastor. Palaeogeography, Palaeoclimatology, Palaeoecology, 147: 291-298.
  • 80. Ostrom, J. H. & McIntosh, J. S., 1966. Marsh’s Dinosaurs: The Collections from Como Bluff. Yale University Press, New Haven, 416 pp.
  • 81. Pankhurst, C. E., Pierret, A., Hawke, B. G. & Kirby, J. M., 2002. Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia. Plant and Soil, 238: 11-20.
  • 82. Pemberton, S. G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J. A., Robbins, D. & Sinclair, I. K., 2001. Ichnology and Sedimentology of Shallow to Marginal Marine Systems. Geological Association of Canada, Short Course Notes, 15, 343 pp.
  • 83. Peterson, O. A., 1905. Description of new rodents and discussion of the origin of Daemonelix. Memoirs of the Carnegie Museum, Pittsburgh, 2: 139-196.
  • 84. Platt, B. F., 2012. Quantification of Ichnological, Paleoecological, Paleohydrological, and Paleoclimatological Information from the Upper Jurassic Morrison Formation. Unpublished PhD dissertation, University of Kansas, Lawrence, Kansas, USA, 501 pp.
  • 85. Platt, B. F., 2014. The foraging pits of the nine-banded armadillo, Dasypus novemcinctus (Mammalia: Xenarthra: Dasypodidae), and implications for interpreting conical trace fossils. Palaeontologia Electronica, 17.3.46A.
  • 86. Platt, B. F., Kolb, D. J., Kunhardt, C. G., Milo, S. P. & New, L. G., 2016. Burrowing through the literature: The impact of soil-disturbing vertebrates on physical and chemical properties of soil. Soil Science, 181: 175-191.
  • 87. Prothero, D. R., 1981. New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bulletin of the American Museum of Natural History, 167: 281-325.
  • 88. Reichman, O. J. & Smith, S. C., 1990. Burrows and burrowing behavior by mammals. In: Genoways, H. H. (ed.), Current Mammalogy. Plenum Press, New York, p. 197-244.
  • 89. Retallack, G. J., 2001. Soils of the Past: An Introduction to Paleopedology, 2nd Edition. Blackwell Science, Oxford, 404 pp.
  • 90. Reynolds, T. D. & Wakkinen, W. L., 1987. Characteristics of the burrows of four species of rodents in undisturbed soils in southeastern Idaho. American Midland Naturalist, 118: 245-250.
  • 91. Riese, D. J., Hasiotis, S. T. & Odier, G. P., 2011. Synapsid burrows and associated trace fossils in the Lower Jurassic Navajo Sandstone, southeastern Utah, U.S.A., indicates a diverse community living in a wet desert ecosystem. Journal of Sedimentary Research, 81: 299-325.
  • 92. Riggs, E. S., 1945. Some early Miocene carnivores. Field Museum of Natural History Geological Series, 9: 69-114.
  • 93. Robinson, J. W. & McCabe, P. J., 1998. Evolution of a braided river system: the Salt Wash Member of the Morrison Formation (Jurassic) in southern Utah. In: Shanley, K. W. & McCabe, P. J. (eds), Relative Role of Eustasy, Climate, and Tectonism in Continental Rocks. SEPMSpecial Publications, 59: 93-107.
  • 94. Schultz, C. B., 1942. A review of the Daimonelix problem. University of Nebraska Studies in Science Technology, 2: 1-30.
  • 95. Shankman, 1993. Channel migration and vegetation patterns in the Southeastern Coastal Plain. Conservation Biology, 7: 176-183.
  • 96. Skinner, J. D., 2005. The Mammals of the Southern African Sub-region. Cambridge University Press, Cambridge, 814 pp.
  • 97. Smith, C. C. & Reichman, O. J., 1984. The evolution of food caching by birds and mammals. Annual Review of Ecology and Systematics, 15: 329-351.
  • 98. Smith, J. J., Hasiotis, S. T., Kraus, M. J. & Woody, D. T., 2008b. Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum. Palaios, 23: 683-699.
  • 99. Smith, R. M. H., 1987. Helical burrow casts of therapsid origin from the Beaufort Group (Permian) of South Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 60: 155-170.
  • 100. Stokes, W. L., 1957. Pterodactyl tracks from the Morrison Formation. Journal of Paleontology, 31: 952-954.
  • 101. Turner, C. E. & Peterson, F., 1992. Sedimentology and stratigraphy of the Morrison Formation in Dinosaur National Monument. University of Wyoming National Park Service Research Center Annual Report, 16: 86-91.
  • 102. Turner, C. E. & Peterson, F., 2004. Reconstruction of the Upper Jurassic Morrison Formation extinct ecosystem - a synthesis. Sedimentary Geology, 167: 309-355.
  • 103. Uchman, U. & Hanken, N.-M., 2013. The new trace fossil Gyrolithes lorcaensis isp. n. from the Miocene of SE Spain and a critical review of the Gyrolithes ichnospecies. Stratigraphy and Geological Correlation, 21: 312-322.
  • 104. Vander Wall, S. B., 1990. Food Hoarding in Animals. University of Chicago Press, Chicago and London, 455 pp.
  • 105. Voigt, S., Schneider, J. W., Saber, H., Hminna, A., Lagnaoui, A., Klein, H., Brosig, A. & Fischer, J., 2011. Complex tetrapod burrows from Middle Triassic red-beds of the Argana Basin (Western High Atlas, Morocco). Palaios, 26: 556-567.
  • 106. Weber, J. N., Peterson, B. K. & Hoekstra, H. E., 2013. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature, 493: 402-405.
  • 107. Wetzel, A., Tjallingii, R. & Stattegger, K., 2010. Gyrolithes in Holocene estuarine incised-valley fill deposits, offshore southern Vietnam. Palaios, 25: 239-246.
  • 108. Wood, H. E. & Wood, A. E., 1933. Daemonhelix in the Pleistocene of Texas. The Journal of Geology, 41: 824-833.
  • 109. Woodrow, D. L. & Fletcher, F. W., 1969. Devonian dipnoan aestivation cylinders. Geological Society of America, Special Paper, 121: 383-384.
  • 110. Zimmerman, J. W., 1990. Burrow characteristics of the nine-banded armadillo, Dasypus novemcinctus. T
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a4b42e3-3db3-4e53-95fd-c0fb5b8913a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.