PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reactivity of nZVI in the removal of Cu(II) and Zn(II) from synthetic mine drainage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Adsorption properties, including isotherms and kinetics, of nano zero-valent iron (nZVI) for Cu(II) and Zn(II) removal from synthetic mine drainage were evaluated in batch tests. The influence of contact time, nZVI doses, pH, ionic strength, temperature, and concentration on nZVI adsorption properties was assessed. The removal of Cu(II) and Zn(II) increased with pH from 3 to 7 and then stabilized up to pH 10. Moreover, the increased Cu(II) adsorption capacity upon increasing temperature and a positive enthalpy change (ΔH) indicate that the adsorption process is endothermic. The results also showed that the adsorption equilibrium for Cu(II) and Zn(II) was achieved after 50 and 30 min, respectively. Kinetics were best described by a pseudo-nth order model, with the order of sorption of 2.231 and 1.363, and the rate constants of 0.0008 and 0.0679 mg1-n·gn-1/min, for Cu(II) and Zn(II), respectively. The correlation between the amount of metals adsorbed on nZVI surface and the residual amount of metals in water during isothermal tests was best described by the nonlinear Sips model. Using this model, high q maxS were found: 286.6 mg/g and 142.6 mg/g, for Cu(II) and Zn(II), respectively, as indication of their high sorption capacity.
Słowa kluczowe
Rocznik
Strony
93--108
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Silesian University of Technology (SUT), Gliwice, Poland
  • Canada Research Chair in Contaminated Mine Water Treatment, Research Institute on Mines and Environment (RIME), University of Quebec in Abitibi-Temiscamingue (UQAT), QC, Canada
Bibliografia
  • [1] KLIMKOVA S., CERNIK M., LACINOVA L., FILIP J., JANCIK D., ZBORIL R., Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching, Chemosphere, 2011, 82 (8), 1178–1184. DOI:10.1016/j.chemosphere.2010.11.075.
  • [2] ZHANG W., WANG C.-B., LIEN H.-L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles, Catal. Today, 1998, 40 (4), 387–395. DOI: 10.1016/S0920-5861(98)00067-4.
  • [3] SUN Y.-P., LI X., CAO J., ZHANG W., WANG H.P., Characterization of zero-valent iron nanoparticles, Adv. Coll. Interf., 2006, 120 (1–3), 47–56. DOI: 10.1016/j.cis.2006.03.001.
  • [4] RANGSIVEK R., JEKEL M., Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment, Water Res., 2005, 39 (17), 4153–4163. DOI: 10.1016/j.watres.2005.07.040.
  • [5] TAKENO N., Atlas of Eh-pH diagrams, Geol. Survey Japan, Open File Report, 2005, 419, 102.
  • [6] KARABELLI D., ÜZÜM Ç., SHAHWAN T., EROGLU A.E., SCOTT T.B., HALLAM K.R., LIEBERWIRTH I., Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake, Ind. Eng. Chem. Res., 2008, 47 (14), 4758–4764. DOI: 10.1021/ie800081s.
  • [7] KISHIMOTO N., IWANO S., NARAZAKI Y., Mechanistic consideration of zinc ion removal by zero-valent iron, Water Air Soil Poll., 2011, 221 (1–4), 183–189. DOI: 10.1007/s11270-011-0781-1.
  • [8] WILKIN R.T., MCNEIL M.S., Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage, Chemosphere, 2003, 53 (7), 715–725. DOI: 10.1016/S0045-6535 (03)00512-5.
  • [9] OH B.-T., LEE J.-Y., YOON J., Removal of contaminants in leachate from landfill by waste steel scrap and converter slag, Environ. Geochem. Health, 2007, 29 (4), 331–336. DOI: 10.1007/s10653-007-9094-0.
  • [10] LI X., ZHANG W., Sequestration of metal cations with zero valent iron nanoparticles a study with high resolution X-ray photoelectron spectroscopy (HR-XPS), J. Phys. Chem. C, 2007, 111 (19), 6939–6946. DOI: 10.1021/jp0702189.
  • [11] SUPONIK T., WINIARSKI A., SZADE J., Processes of removing zinc from water using zero-valent iron, Water Air Soil Poll., 2015, 226 (11), 360. DOI: 10.1007/s11270-015-2617-x.
  • [12] SUPONIK T., WINIARSKI A., SZADE J., Species formed on iron surface during removal of copper ions from aqueous solutions, Physicochem. Probl. Miner, Proc., 2015, 51 (2), 731–743. DOI: 10.5277/ppmp150230.
  • [13] SUPONIK T., POPCZYK M., PIERZYNA P., The sorption of metal ions on nanoscale zero-valent iron, E3S Web Conf., 2017, 18, 01019. DOI: 10.1051/e3sconf/201712301019.
  • [14] RAOUF M.A., EL-KAMASH A., Kinetics and thermodynamics of the sorption of uranium and thorium ions from nitric acid solutions onto a TBP-impregnated sorbent, J. Radioanal. Nucl. Chem., 2006, 267 (2), 389–395. DOI: 10.1007/s10967-006-0060-6.
  • [15] HE Y., CHEN Y.-G., ZHANG K.-N., YE W., WU D., Removal of chromium and strontium from aqueous solutions by adsorption on laterite, Arch. Environ. Prot., 2019, 45 (3), 11–20. DOI: 10.24425/aep.2019.128636.
  • [16] WANG J., LIU G., LI T., ZHOU C., Physicochemical studies toward the removal of Zn(II) and Pb(II) ions through adsorption on montmorillonite-supported zero-valent iron nanoparticles, RSC Adv., 2015, 5 (38), 29859–29871. DOI: 10.1039/c5ra02108a.
  • [17] ÜZÜM Ç., SHAHWAN T., EROĞLU A.E., HALLAM K.R., SCOTT T.B., LIEBERWIRTH I., Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 2009, 43 (2), 172–181. DOI: 10.1016/j.clay.2008.07.030.
  • [18] SUPONIK T., Zero-valent iron for removal of inorganic contaminants from low pH water, Environ. Prot. Eng., 2015, 41 (1), 15–27. DOI: 10.5277/epe150102.
  • [19] GERANIO L., Review of zero valent iron and apatite as reactive materials for permeable reactive barrier, Term. Paper, SS 07/08, major in Biogeochemistry and Pollutant Dynamics Department of Environmental Sciences, ETH, Zurich 2007.
  • [20] PODSTAWCZYK D., WITEK-KROWIAK A., Biosorption of copper(II) ions by magnetically modified rapeseed meal. Current issues raised by young scientists, Creativetime, Krakow 2015, 232–237.
  • [21] SHI L.-N., ZHOU Y., CHEN Z., MEGHARAJ M., NAIDU R., Simultaneous adsorption and degradation of Zn2+ and Cu2+ from wastewaters using nanoscale zero-valent iron impregnated with clays, Environ. Sci. Poll. Res., 2013, 20 (6), 3639–3648. DOI: 10.1007/s11356-012-1272-7.
  • [22] YANG F., HE Y., SUN S., CHANG Y., ZHA F., LEI Z., Walnut shell supported nanoscale Fe0 for the removal of Cu(II) and Ni(II) ions from water, J. Appl. Polym. Sci., 2016, 133 (16). DOI: 10.1002/app.43304.
  • [23] AYOB A., ISMAIL N., TENG T.T., ABDULLAH A.Z., Immobilization of Cu2+ using stabilized nano zero valent iron particles in contaminated aqueous solutions, Environ. Prot. Eng., 2012, 38 (3), 119–131. DOI: 10.5277/EPE120311.
  • [24] GROSVENOR A., KOBE B., BIESINGER M., MCINTYRE N., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds, Surf. Int. Anal., 2004, 36 (12), 1564–1574. DOI: 10.1002/sia.1984.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a3a3d23-3007-4686-b853-87a1f8eabce3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.