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Abstract: The paper presents a methodology of optimizing the parameters of the passive suspension system 

of a railway vehicle. A linear half-vehicle model and an example of the procedure carried out to optimize a 

selected parameter of the model have been demonstrated. A method of the selection of damping in the 

suspension system of a railway vehicle, based on over 40-year achievements of the cited authors of 

publications in the field of motor vehicles, has been shown. The optimization of linear damping in the 

secondary suspension system of a passenger carriage moving on a track with random profile irregularities 

has been described in detail. The algorithms adopted for the calculations have a wider range of applicability; 

especially, they may be used for determining the optimum values of the other parameters of the railway vehicle 

model under analysis, i.e. stiffness of the secondary suspension system as well as stiffness and damping of the 

primary suspension system. 
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1. Introduction and references to the literature 

In vehicle dynamics, a special branch is discerned, 

where the vehicle motion in the vertical direction is 

described and analysed. It is chiefly dedicated to the 

translational vibrations, but angular vibrations in the 

vertical planes parallel and perpendicular to the 

vehicle symmetry plane are addressed as well. In 

simplified analyses, “half-vehicle” and “quarter-

vehicle” models are used. This is chiefly applicable 

to motor vehicles (Arczyński, 1993; Crolla, 1996; 

Firth, 1991; Gobbi et al., 2006; Gobbi & 

Mastinu, 2001; Kamiński & Pokorski, 1983; 

Kasprzyk & Prochowski, 1990; Kasprzyk et al., 

1974; Lozia, 1985; Lozia, 2016; Mitschke, 1989; 

Mitschke, 1977; Muluka, 1998; Patil & Joshi, 2014; 

Otenberg, 1974; Ryba, 1974; Sekulić & 

Devidović, 2011; Sharp & Crolla, 1987; Sharp & 

Hassan, 1986; Ślaski, 2012; Verros et al., 2005; Yi 

& Song, 1999; Wong, 2001), but works where such 

models were used for the research on the railway 

vehicle motion can be indicated as well (Grzyb & 

Bogacz, 2015; Liang et al., 2012; O’Brien et al., 

2015; Sim et al., 2013). 

Models of this type, used for works on motor 

vehicles, appeared in 1970s (eg. Kasprzyk & 

Prochowski, 1990; Mitschke, 1977; Otenberg, 1974; 

Ryba, 1974). They were utilized in many 

publications of 1980s (e.g. Kamiński & Pokorski, 

1983; Lozia, 1985; Mitschke, 1977; Sharp & 

Crolla, 1987; Sharp & Hassan, 1986) and 1990s (e.g. 

Firth, 1991; Kasprzyk & Prochowski, 1990, 

Muluka, 1998). In the 21st century, they are still 

useful for more complex and comprehensive 

analyses, including the works where the results are 

synthesized in the form of recommendations for 

vehicle designers (e.g. Gobbi et al., 2006; Gobbi & 

Mastinu, 2001; Konieczny, 2011; Patil & Joshi, 

2014; Sekulić & Devidović, 2011; Ślaski, 2012; 

Verros et al., 2005; Wong, 2001). Such models are 

both linear and non-linear and represent passive, 

semi-active, and active suspension systems. In some 

of the works, the model tests are supplemented by 

experiments carried out on systems whose structure 

is close to that of the quarter-vehicle model 

(Konieczny, 2011; Patil & Joshi, 2014; Ślaski, 

2012). At present, models of this type are used in 

sophisticated optimizing algorithms, including those 

dedicated to searching for Pareto-optimal solutions 

(Kwarciński, 2007), where the random nature of 

selected model parameters (sprung mass determined 

by hardly-predictable vehicle load and tyre stiffness 

depending on inflation pressure, which varies during 



Zbigniew Lozia, Ewa Kardas-Cinal 

The use of a linear half-vehicle model for the optimization of damping in the passive suspension system … 

 

32 

the vehicle operation, e.g. Gobbi et al. (2006)), is 

taken into account, or where designs of variable-

damping, semi-active, and active suspension 

systems are assessed (e.g. Crolla, 1996;Firth, 1991; 

Gobbi et al., 2006; Gobbi & Mastinu, 2001; Sekulić 

& Devidović, 2011; Sharp & Crolla, 1987; Sharp & 

Hassan, 1986; Ślaski, 2012; Verros et al., 2005; 

Wong, 2001). 

In the research works on railway vehicles, the 

simplified quarter-vehicle models are chiefly used to 

analyse the variable-damping suspension system. In 

such an application, models of this type were used 

to investigate the vertical vehicle dynamics (Grzyb 

& Bogacz, 2015; Li & Goodall, 1999; Liang et al., 

2012), as it is in the case of motor vehicles, and the 

lateral vehicle dynamics related to the limitation of 

the position of wheels moving on a track (Sim et al., 

2013). In such models, track profile irregularities 

(vertical and lateral) are represented, which define 

the kinematic excitation that results in vehicle body 

vibrations. A quarter-vehicle model was also used in 

O’Brien et al. (2015) for numerical validation of the 

method that was there proposed for determining the 

vertical irregularities in the track profile on the 

grounds of measurements of bogie acceleration; 

methods of this kind are employed as an inexpensive 

alternative to the standard measurements of track 

geometry with the use of laser systems installed in 

track inspection cars. 

At the initial stage, the works on vehicle dynamics 

were seriously limited by the analysis and 

calculation methods available. It was as late as in 

1950s that mathematical methods began to be used, 

thanks to which analytical considerations with 

limited computational potential became possible. 

The introduction of computer-based techniques and 

new methods of examining linear and non-linear 

mechanical systems with deterministic or random 

excitation has made it possible to carry out 

calculations that would be more extensive, with 

simple or more complex mathematical models being 

used. Particularly important here are monograph-

like works, which provide a basis for building 

models with different complexity degree and for 

analysing their properties. For the authors from 

Western Europe and North America, this chiefly 

applies to the works by Meirovitch (1975), Newland 

(1984), Mitschke (1977, 1989), Wong (2001), 

Kalker (1982) and Wickens (1976). In Poland, 

considerable importance is also attached, apart from 

the above, to the works by Rotenberg (1974), 

Kamiński & Pokorski (1983), Osiecki (1979, 1994), 

Osiecki et al. (2006), Kasprzyk & Prochowski, 1990 

and Kasprzyk et al. (1974). The first publications 

backed up with extensive computer calculation 

results appeared as recently as in 1970s. Such works 

have been continued until now and they cover a wide 

spectrum of issues related to vehicle dynamics. In 

the field of railway vehicles, the works considered 

to be of considerable importance are e.g. those 

described in publications by Chudzikiewicz (1995), 

Choromański and Zboiński (1991), Zboiński (2000, 

2004) and Piotrowski (1990) as well as in a 

monograph edited by Kisilowski (1991). 

In this study, over 40-year achievements of many 

foreign and Polish authors in the field of methods of 

optimizing the characteristics of passive vehicle 

wheel suspension systems have been utilized. The 

railway vehicle dynamics has been analysed with 

taking as a reference the works in the field of the 

dynamics of motor vehicles (Arczyński, 1993; 

Kamiński & Pokorski, 1983; Lozia, 2016; Mitschke, 

1989; Mitschke, 1977; Osiecki, 1994; Otenberg, 

1974; Wong, 2001). The optimization of linear 

damping in the secondary suspension system in a 

simple model of a railway vehicle moving on an 

uneven track with random vertical irregularities has 

been described in detail in the subsequent part of this 

paper. 

The authors of an overwhelming majority of the 

publications where the said optimization problem is 

addressed enumerate three main assessment criteria, 

which are related to the minimization of the driver 

and passengers’ discomfort measures as well as to 

changes in the normal reaction at the tyre-road 

contact and to reduction in the range of working 

displacements of the suspension system (Crolla, 

1996; Firth, 1991; Gobbi et al., 2006; Gobbi & 

Mastinu, 2001; Kasprzyk & Prochowski, 1990, 

Kasprzyk et al., 1974; Mitschke, 1989; Mitschke, 

1977; Muluka, 1998; Orvnäs, 2010; Orvnäs, 2011; 

Otenberg, 1974; Ryba, 1974; Sekulić & 

Devidović, 2011; Sharp & Crolla, 1987; Sharp & 

Hassan, 1986; Ślaski, 2012; Verros et al., 2005; 

Wong, 2001). In Sharp & Crolla (1987), the 

previous works (carried out by 1987) on the 

influence of damping in the suspension system on 

the measures of discomfort and safety hazard of a 

motor vehicle have been summed up. A 

contradiction between the existing requirements has 



AoT Vol. 39/Issue 3 2016 
 

 

33 

been highlighted. Increased damping in the 

suspension system impairs the comfort but improves 

the safety. The results presented in the publications 

referred to above also show that a growth in the 

damping is accompanied by a reduction in the range 

of working displacements of the suspension system. 

Most of the authors of the publications quoted here 

assume that the excitation is a Gaussian stationary 

random process in the domain of wavelength L [m], 

wave number (spatial frequency) 1/L [1/m], or 

angular (spatial) frequency of the road profile 

Ω = 2π/L [rad/m]. The frequency band of the 

vibrations of bodies constituting the vehicle model 

is determined. It is limited in consideration of the 

properties of the object under test or the problem 

being analysed (ride comfort, wheel-ground 

interaction, etc.). In the publications quoted, 

different frequency bands were chosen, 

predominantly 0-20 Hz (Muluka, 1998, Verros et al., 

2005), 0-25 Hz or 0-30 Hz (Mitschke, 1989; 

Mitschke, 1977; Ślaski, 2012) or 1-80 Hz (Ślaski, 

2012). An important limitation of the analyses, 

which are carried out for frequencies of up to 80 Hz, 

arises from the fact that in the ISO standards 

concerning the vibrational comfort (ISO 2631–1, 

1985 & 1997), the acceptability limits are specified 

for a frequency band of 0-80 Hz. 

 

2. General description of the half-vehicle 

model 

The model of a railway vehicle (Figs. 1a and 1b) 

represents a conventional passenger carriage seated 

on two-axle bogies, model 25ANa (Kardas-Cinal, 

2013). The primary physical model of the vehicle 

consists of 7 rigid bodies representing vehicle body, 

two bogies, and four wheelsets. The model has 

27 degrees of freedom, which correspond to the 

lateral, vertical, and angular displacements of the 

bodies that make up the complete vehicle. The 

model represents a railway vehicle moving on a 

straight track with random profile irregularities. The 

positions of the railway vehicle component bodies 

are described in a moving reference frame Oxyz 

attached to the centreline of the track of nominal 

dimensions. The origin O of the reference coordinate 

system is situated in the track centreline and moves 

along the centreline with a velocity equal to vehicle 

speed v. The coordinate axis Ox is tangent to the 

centreline of the track with the nominal dimensions 

(which is ideally straight), the coordinate axis Oz is 

pointing vertically downwards, and the coordinate 

axis Oy, perpendicular to the other axes (Ox and 

Oz), is directed horizontally from the left rail to the 

right one. The moving reference frame Oxyz is an 

inertial frame because the railway vehicle moves 

along the straight track with a constant speed v. The 

position of the kth body in the vehicle model is 

described by six coordinates, i.e. coordinates xk, yk, 

and zk of the centre of mass of the body and three 

angles φk, ψk, and k, which define the orientation of 

the body in the space. These angles are referred to as 

follows: φk is the pitch angle, ψk is the yaw angle, 

and k is the roll angle. In the case of wheelsets, the 

following terminology is used for the corresponding 

angles: ψi is called “angle of attack”, φi is called 

“wheelset rotation angle”, and dφi/dt is the angular 

velocity of the ith wheelset around axis yi. 

Individual bodies in the railway vehicle model are 

connected with each other by flexible (spring-

damping) links, which constitute the vehicle 

suspension system. In most railway vehicles, 

including passenger carriages, two-stage suspension 

systems are used: the primary suspension 

(springing) system consists of the flexible links 

between wheelsets and bogie frames and the 

secondary suspension (springing) system consists of 

the flexible links between the bogie frames and the 

vehicle body. In conventional railway cars with 

passive suspension systems, the typical suspension 

components include coil springs and hydraulic 

dampers. In the railway vehicle model presented, the 

suspension components are treated as zero-mass 

elements and their force-deflection curves are 

approximated by linear functions of suspension 

element deformations and of time derivatives of the 

deformations. Such characteristic curves correspond 

to those of the rheological models consisting of a 

spring with stiffness coefficient k and a viscous 

damper with damping coefficient c. 

In this study, the original model of a railway vehicle 

(Figs. 1a and 1b) is simplified at first to a half-

vehicle model shown in Figs. 1c and 1d. In order to 

determine the mass mbp of the vehicle body part 

taken into account in the simplified model, the 

vehicle body is represented by a system of three 

point masses mbp, mbs, and mbt, situated in the central 

axis of inertia of the vehicle body (directed along 

axis Ox), i.e. in the centre of vehicle body mass and 

at points situated at distances of lp = lt = lw/2 from 

the said centre to the front and rear of the vehicle 
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body, respectively (Fig. 1e). The vehicle body mass 

has been divided into masses mbp, mbs, and mbt in 

compliance with three rules: mass conservation law 

(the first equation in Fig. 1e), law of conservation of 

the position of the centre of mass (the second 

equation in Fig. 1e), and law of conservation of the 

moment of inertia with respect to axis Oy (the third 

equation in Fig. 1e). Such a method of determining 

the equivalent mass of the vehicle body in the half-

vehicle model is more accurate from the point of 

view of vehicle dynamics than the adopting of 

mbp = mb/4, as it was done for the quarter-vehicle 

model in the work described in Liang et al. (2012). 

At the next stage, the model is further reduced so that 

it becomes applicable to the description of motion of 

the vehicle model bodies in the vertical direction 

only. Thus, a reduced half-vehicle model (Fig. 2) is 

built, which is a system with two degrees of freedom 

(a 2DOF system) describing the vertical vibrations 

of a part of the vehicle body (“sprung mass”) 

situated over one of the bogies and vibrations of the 

masses connected with the bogie frame (“unsprung 

mass”). The two mass elements are connected with 

each other by a spring-damper system acting in 

parallel and representing the spring-damping 

properties of the secondary suspension system, 

elsewhere referred to (for simplification) as 

“suspension system”. The unsprung mass interacts 

with the equivalent rail wheel (representing two 

wheelsets of the bogie under consideration) through 

a spring-damper or spring-only element, which 

represents the spring-damping or spring-only 

properties of the primary suspension system. 

 
 

 
Fig. 1. Original physical model of a passenger carriage, viewed in plane (x, z) (Fig. a) and in plane (y, z) 

(Fig. b), and simplified half-vehicle model of the carriage, viewed in plane (x, z) (Fig. c) and in plane 

(y, z) (Fig. d); illustration of the method of determining masses mbp and mbt of vehicle body halves 

and coupling mass mbs (Fig. e) 
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The parameters of this reduced model have been 

determined on the grounds of the half-vehicle model 

shown in Fig. 1. In particular, the sprung mass is 

m1 = mbp, the unsprung mass m2 is equal to the bogie 

frame mass mw, and the equivalent rail wheel mass 

mz has been adopted as the total mass of two 

wheelsets. The stiffness and damping coefficients of 

the primary suspension system, denoted by k2 and 

c2, respectively, have been determined as sums of 

appropriate coefficients kzz and czz of the four 

spring-damping links that are components of the 

primary vertical suspension system and are situated 

on the left and right side of each of the two wheelsets 

included in the bogie. In consequence, the 

coefficient values are k2 = 4kzz and c2 = 4czz. The 

stiffness and damping coefficients of the secondary 

suspension system k1 = 2knz and c1 = 2cnz have been 

determined likewise, by adding up the values of the 

corresponding coefficients of the two components of 

the secondary vertical suspension system, situated 

on the left and right side of the bogie. 
 

3. Objective 

The objective of this study is to present the methods 

of optimizing the characteristics of a passive 

secondary suspension system of a railway car, 

elsewhere referred to (for simplification) as 

“suspension system”. A linear half-vehicle model 

and an example procedure of determining the 

suspension damping coefficient has been used. 

In this study, over 40-year achievements of the cited 

authors of publications in the field of motor vehicle 

dynamics have been utilized as an alternative for the 

methodology normally used in the railway 

engineering for the selection of damping in the 

suspension system of a railway vehicle. The work 

also contributes to the development of the standard 

methods. 

Previously, the impact of parameters of the passive 

suspension system on the dynamics of a railway 

vehicle, especially on the ride comfort, was 

examined and the results have been given in 

publications (Kardas-Cinal, 2013, Kardas-Cinal, 

2006; Kisilowski, 1991; Zhou et al., 2009). As 

regards active vehicle suspension systems, the 

research works on such systems have been presented 

e.g. in (Kim et al., 2007; Li & Goodall, 1999; Liang 

et al., 2012; Orvnäs, 2010; Orvnäs, 2011; Sim et al., 

2013). 

The algorithms adopted for the calculations have a 

wider range of applicability; especially, they may be 

used for determining the optimum values of the 

other parameters of the railway vehicle model under 

analysis, i.e. stiffness of the secondary suspension 

system as well as stiffness and damping of the 

primary suspension system. 

 

4. Detailed description of the half-vehicle 

model and its equations of motion in the time 

and frequency domain 

Below has been given a detailed description of the 

linear half-vehicle model presented in Fig. 2. It 

consists of three mass elements, i.e. sprung mass 

m1 [kg] (a part of the vehicle body), unsprung mass 

m2 [kg] (connected with the bogie frame), and 

equivalent rail wheel mass mz [kg] representing the 

mass of two wheelsets of the specific railway car 

bogie. The stiffness coefficients of the secondary 

suspension system, elsewhere referred to (for 

simplification) as “suspension system”, and of the 

primary suspension system have been denoted by 

k1 [N/m] and k2 [N/m], respectively. The symbols 

c1 [N∙s/m] and c2 [N∙s/m] have the meaning of the 

viscous damping coefficients of the secondary and 

primary suspension systems, respectively. The 

quantity denoted by ζ (t) [m] is the time-varying 

vertical kinematic excitation caused by track profile 

irregularities. The rail wheel (wheelsets) lift-off 

phenomenon is disregarded. The railway vehicle, i.e. 

the model under consideration as well, moves 

rectilinearly with a constant speed V [km/h] (i.e. 

v [m/s]). 
 

 
Fig. 2. Half-vehicle model (for the notation used, 

see the text) 
 

The equations of motion may be derived from the 

kinetostatic analysis, with taking into account the 

forces of inertia of the mass elements of the model. 

They have the form as presented in relation (1). 
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1 1 1 1 1 1 1 2 1 2

2 2 1 2 2 1 2 2 1 1 1 1 2 2

m z c z k z c z k z 0

m z (c c ) z (k k ) z c z k z c k 

         


              
 (1) 

 

 (2) 

 

Their matrix form is shown in relation (2), where the 

symbols of the matrices of inertia M, viscous 

damping C, stiffness K, excitation influences 

transmitted by the viscous damping in the primary 

suspension system Cζ, and excitation influences 

transmitted by the stiffness of the primary 

suspension system Kζ have been indicated. The 

vectors of the generalized coordinates 

(displacements), velocities, and accelerations have 

been denoted by , ,q q q , respectively. This notation 

has been adopted in relation (equation) (3), which is 

the most concise form of presenting the relation (1). 
 

ζ ζ        
ζ ζ

M q C q K q C K  (3) 

 

For equation (3), the Laplace transform has been 

formulated, for zero initial conditions. After 

transformations, equation (4) has been obtained, 

where the domain s = r + i∙ω has a real part r and an 

imaginary part ω, while i2 = −1 (ω is the angular 

frequency [rad/s]): 
 

       s s s s ζ s        2

ζ ζM C K q C K  (4) 

 

The solution of this equation has the form (5): 
 

       ζ s


        
12

ζ ζq s M s C s K C s K  (5) 

 

The operational transmittance (transfer function) for 

displacements (6) is the ratio of the Laplace 

transform of the output signal (response) of a system 

to the Laplace transform of the input signal 

(excitation) of the same system at zero initial 

conditions: 
 

 
 

   

1

2

          

q

q

H (s)

H (s) ζ s



 
   
  

       

q

12

ζ ζ

q(s)
H s

M s C s K C s K

 (6) 

The operational transmittances for velocities and 

accelerations are expressed by relations (7) and (8), 

respectively: 
 

 
 

 1

2

q

q

H (s)

H (s) ζ s

 
    
  

q q

q(s)
H s s H s  (7) 

 
 

 1

2

q 2

q

H (s)

H (s) ζ s

 
    
  

q q

q(s)
H s s H s  (8) 

 

We can easily pass from the Laplace transform to the 

Fourier transform. The operational transmittances 

will then become spectral transmittances. In formal 

terms, this is expressed in passing from domain s to 

argument i∙ω, by assuming the real part r of the 

expression s = r + i∙ω as zero. With such a 

substitution, the relations (4)-(8) still hold. 

 

5. Random excitation from track profile 

irregularities 

An assumption has been made here that the track is 

undeformable but uneven in the vertical direction. 

The track profile irregularities constitute a 

realization of a stationary Gaussian random process. 

The track of a specific class is described in 

ORE B176 (1989) by the function of power spectral 

density (PSD) Sd (Ω) [m3/rad] of the vertical profile 

irregularities: 
 

 
2

2 2 2 2( ) ( )

c
d

c r

A
S


 

    
 (9) 

 

where: 

Ω = 2π/L = 2π∙fs – angular (spatial) frequency of 

the track profile [rad/m]; 

L – wavelength of track profile irregularities [m]; 

fs – track profile wave number (spatial frequency) 

[1/m]; 

Ωc = 0.8200 rad/m; 

Ωr = 0.0206 rad/m; 
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A = 4.032e-07 m2∙rad/m for a “good-quality” 

(“low-disturbance”) track; 

A = 10.800e-07 m2∙rad/m for a “poor-quality” 

(“high-disturbance”) track. 

The presented form of the PSD function Sd (Ω) of 

the vertical profile irregularities is defined for the 

angular (spatial) frequency Ω of the track profile 

being within the interval 

0.0628 rad/m ≤ Ω ≤ 2.513 rad/m, i.e. for the wave 

number (spatial frequency) fs being within the 

interval 0.01 1/m ≤ fs ≤ 0.4 1/m, which corresponds 

to the wavelength L ranging from 2.5 m to 100 m. 

For the fs values exceeding the upper limit, the Sd 

values have been assumed as zero. The PSD values 

of the vertical profile irregularities for a “good-

quality” and “poor-quality” track, according to the 

classification given in ORE B176 (1989), have been 

shown in Fig. 3. 
 

 
Fig. 3. Power spectral density values of random 

track profile irregularities according to the 

classification given in ORE B176 (1989)  
 

6. Criteria of the selection of damping in the 

half-vehicle suspension system (optimization 

criteria) 

In the half-vehicle model, only the vertical motion is 

analysed. As it was in publications (Crolla, 1996; 

Firth, 1991; Gobbi et al., 2006; Gobbi & 

Mastinu, 2001; Kasprzyk & Prochowski, 1990, 

Kasprzyk et al., 1974; Mitschke, 1989; Mitschke, 

1977; Muluka, 1998; Orvnäs, 2010; Orvnäs, 2011; 

Otenberg, 1974; Ryba, 1974; Sekulić & 

Devidović, 2011; Sharp & Crolla, 1987; Sharp & 

Hassan, 1986; Ślaski, 2012; Verros et al., 2005; 

Wong, 2001), three criteria have been adopted to 

assess the correctness of selection of suspension 

damping coefficient c1: 

– minimization of vehicle occupants’ discomfort, 

which is measured by the standard deviation of 

sprung mass acceleration, σa [m/s2]; 

– minimization of the safety hazard, which is 

measured by the standard deviation of the varying 

dynamic component (i.e. the dynamic value 

measured in relation to the static value) of the 

vertical reaction at the wheel-rail contact, σF [N]; 

– reduction in the working displacements of the 

secondary suspension system to a value lower than 

the secondary suspension displacement limit 

rzg [m]. 

In formal terms, these criteria may be described as 

follows (as functions of suspension damping 

coefficient c1 and vehicle speed V): 

Q (c1, V) = wa·a (c1,V) + wF·F (c1,V)  min (10) 
 

6·uz (c1, V) ≤ rzg (11) 
 

where: 

Q (c1, V) [-] – the objective function subject to 

minimization; 

wa [1/m], wF [1/N] – weighting factors for 

discomfort and safety hazard, respectively; 

σuz (c1, V) [m] – standard deviation of the 

deflection of the secondary suspension system 

(measured in relation to the static value); 

rzg [m] – secondary suspension displacement limit. 
 

The above criteria are adopted for each of all the 

track irregularity classes taken into consideration. 

The factor “6” in formula (11) comes from the 

Gaussian distribution of the suspension deflection in 

the model under analysis. This stems from the 

known property of the response of a linear system to 

a Gaussian stationary excitation from track profile 

irregularities, as these irregularities have Gaussian 

distributions, too. The working displacement of the 

secondary suspension system is treated here as a 

doubled value of the maximum dynamic deflection 

of the suspension system, which is equal to about 

3∙σuz. The standard deviations σa, σF, and σuz are 

calculated from the following known formulas 

(Arczyński, 1993; Kamiński & Pokorski, 1983; 

Lozia, 2016; Mitschke, 1989; Mitschke, 1977; 

Osiecki, 1994; Otenberg, 1974; Wong, 2001): 
 

max max

1 q1

ω ω
2

a q d

0 0

σ S (ω) dω H (i ω) S (ω) dω        (12) 

max max

F

ω ω
2

F F d

0 0

σ S (ω) dω H (i ω) S (ω) dω        (13) 

max max

uz

ω ω
2

uz uz d

0 0

σ S (ω) dω H (i ω) S (ω) dω        (14) 



Zbigniew Lozia, Ewa Kardas-Cinal 

The use of a linear half-vehicle model for the optimization of damping in the passive suspension system … 

 

38 

where the new symbols are defined as follows: 

1q F uzS (ω), S (ω), S (ω)  – power spectral densities of 

sprung mass accelerations [m2/s3/rad], dynamic 

component of the vertical reaction at the wheel-

rail contact [N2∙s/rad], and deflection of the 

secondary suspension system [m2∙s/rad], 

respectively; 

ω = 2π∙f – radian frequency ω [rad/s] and Hertz 

frequency f [Hz]; 

ωmax = 2π∙fmax – maximum radian frequency 

ωmax [rad/s] and maximum Hertz frequency 

fmax [Hz] under consideration; 

q1

H (i ω)  – spectral transmittance for the sprung 

mass acceleration (see 8) [1/s2]; 

HF (i∙ω) – spectral transmittance for the dynamic 

component of the vertical reaction at the wheel-

rail contact [N/m]; 

Huz (i∙ω) – spectral transmittance for the deflection 

of the secondary suspension system [-]. 
 

To pass from Sd (Ω) [m3/rad] to Sd (ω) [m2∙s/rad], i.e. 

to change the independent variable from Ω [rad/m] 

(angular, i.e. spatial, frequency of the track profile) 

to ω [rad/s] (radian frequency of the input vibration), 

Ω must be multiplied by vehicle speed v [m/s], with 

Sd (Ω) being simultaneously divided by v [m/s]. 

Thanks to this, the definite integrals of Sd (Ω) and 

Sd (ω) in the mutually corresponding frequency 

bands under consideration (Ω and ω) will have the 

same value: the variance of track profile height 
2

ξ(σ ) . 

The Fourier transforms of the dynamic component 

of the vertical reaction at the wheel-rail contact and 

of the deflection of the secondary suspension system 

are defined by the following two equations, 

respectively: 
 

     

     

2 2

2 2 z

F i ω c [ξ i ω z i ω ]

         k [ξ i ω z i ω ] m i ωζ

      

       
 (15) 

 

     z 2 1u i ω z i ω  z i ω      (16) 

 

Based on equations (6)-(8) as well as (15) and (16), 

after transformations, the following final concise 

forms of spectral transmittances have been obtained 

(with remembering that q1 = z1 and q2 = z2): 
 

 
 1 1

21
q q

q (i ω)
H i ω ω H (i ω)

ζ i ω


     


 (17) 

 

 
 

2

F

2

2 2 q z

F(i ω)
H i ω

ζ i ω

    (i c ω k ) [1 H (i ω)] m 


  



        

 (18) 

 

 
 

2 1

2 1
uz

q q

q (i ω) q (i ω)
H i ω

ζ i ω

               H (i ω) H (i ω)

  
  



   

 (19) 

 

7. Calculation data: parameters of the model 

and of the test conditions 

The model parameters taken as an example, 

corresponding to the data of the suspension system 

of a passenger carriage, have been given in Table 1. 

Two tracks, described in Section 5, were chosen for 

the calculations: 

– track 1, referred to as a “good-quality” (or “low-

disturbance”) track; 

– track 2, referred to as a “poor-quality” (or “high-

disturbance”) track. 

The lowest and highest values of the wavelength of 

track profile irregularities were L = 2.5 m and 

L = 100 m, respectively. For the frequencies 

exceeding the upper limit of this frequency band, the 

PSD values Sd (Ω) of the vertical track profile 

irregularities have been assumed as zero. 

In consideration of the ISO standard provisions that 

concern the vibrational comfort (ISO 2631–1, 1985 

& 1997), the frequency band of 0-80 Hz (0-

502.65 rad/s) was adopted for the analyses. 

The analyses were carried out for 12 constant 

vehicle speeds V [km/h], changed within the range 

from 50 km/h to 160 km/h in steps of 10 km/h. The 

vehicle speed values expressed as v [m/s] and 

V [km/h] are connected with each other by the 

generally known relation v = V/3.6. 

The damping coefficient c1 [N∙s/m] was changed 

and its values were indirectly expressed by means of 

a relative damping coefficient (Arczyński, 1993) for 

the secondary suspension system, i.e. by values  

γ [-] defined as follows: 

 

1 1

1kr 1 01 01

c c h
γ

c 2 m ω ω
  

 
 (20) 

 

c1kr = 2·m1·01 (21) 

 

h = c1/2/m1 (22) 
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where: 

c1kr [N∙s/m] – critical damping coefficient for the 

secondary suspension system; 

ω01 = 2∙π∙f01 – the first (lower) natural radian 

frequency of the undamped system [rad/s]; 

f01 – the first (lower) natural Hertz frequency of the 

undamped system [Hz]; 
 

2 1 2 1 2 1
01

1 2

2

1 2 1 2 1 1 21

1 2 1 2

k m (k k ) m
ω

2 m m

k m (k k ) m k k
          

2 m m m m

   
 

 

     
  

   

 (23) 

 

The second (higher) natural radian frequency of the 

undamped system ω02 = 2∙π∙f02 [rad/s] is defined by 

the following equation (Arczyński, 1993): 
 

2 1 2 1 2 1
02

1 2

2

1 2 1 2 1 1 21

1 2 1 2

k m (k k ) m
ω

2 m m

k m (k k ) m k k
       

2 m m m m

   
 

 

     
  

   

 (24) 

 

and f02 is the second (higher) natural Hertz 

frequency of the undamped system [Hz]. 

For the system under analysis, these values were 

ω01 = 8.715 rad/s, ω02 = 31.567 rad/s, f01 = 1.387 Hz, 

f02 = 5.024 Hz, c1kr = 123 969.258 N∙s/m ≈ 

123 970 N∙s/m. 

The analyses were carried out for 26 values of the 

relative damping coefficient γ [-], changed within 

the range from 0.2 to 0.7 in steps of 0.02. 

The value of the coefficient of damping in the 

suspension system was: 
 

c1= ·c1kr = ·2·m1·01 [N·s/m] (25) 
 

The weighting factors for discomfort and safety 

hazard, wa and wF, were so selected that they 

reflected equal treatment of both of these criteria. In 

the easiest way, their values should be determined 

after the stage of normalization of calculation 

results, which has been described in Lozia (2016). 

The working displacements of the suspension 

system were limited to a value of rzg = 0.0985 m, 

corresponding to the real linear range of operation of 

the suspension system of the railway vehicle under 

analysis. The model parameters and test conditions 

as described above have been brought together in 

Table 1. 
 

8. Calculation results before the modification 

of the optimization criteria 

For the model parameters and test conditions as 

specified in Table 1, calculations were carried out in 

accordance with the algorithm presented in a 

previous part of this paper. 

Figs. 4, 5, and 6 show the absolute values of spectral 

transmittances for sprung mass acceleration, for the 

dynamic component of the vertical reaction at the 

wheel-rail contact, and for the deflection of the 

secondary suspension system, as functions of the 

excitation frequency, in the 0-80 Hz frequency band, 

for various values of the relative damping 

coefficient, ranging from 0.2 to 0.7. In each of the 

three drawings mentioned above, a maximum can be 

clearly seen for a frequency close to the first natural 

frequency of the undamped system (1.387 Hz), with 

the values of the maximum being the lower the 

higher the relative damping was. The second 

resonance effect cannot be seen because of a high 

value of the coefficient of damping in the primary 

suspension system (c2). For this hypothesis to be 

verified, calculations were also carried out for a 

significantly lower value of this damping 

coefficient. For such a case, the effect of the second 

natural frequency of the undamped system 

(5.024 Hz) could be clearly seen in graphs similar to 

those presented in Figs. 4, 5, and 6. 

For the sprung mass acceleration (Fig. 4), the impact 

of damping was very high in the whole excitation 

frequency band under analysis. Apart from a drop in 

the absolute transmittance value with an increase in 

the damping in the zone close to the first resonance, 

a significant growth in the absolute transmittance 

value could be observed in the above-resonance 

zone. In the latter case, a growth in the damping 

impairs the ride comfort. 

As regards the dynamic component of the vertical 

reaction at the wheel-rail contact (Fig. 5), the 

influence of damping was considerable at the 

excitation frequencies being low and close to the 

resonance (Fig. 5b). An increase in the damping 

reduced the absolute transmittance value in the area 

close to the first resonance and caused it to grow in 

the zone above the node in the graph curves, at 

frequencies exceeding 2 Hz. On the other hand, this 

impact was not so strong at the frequencies 

significantly exceeding the second resonance, where 

the absolute transmittance values remained close to 
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each other in spite of increasing frequencies 

(Fig. 5a). 

The absolute value of the spectral transmittance of 

suspension deflection (Fig. 6) declined with 

increasing damping in the area close to the first 

resonance. In the above-resonance zone, this impact 

of the damping in the suspension system was quite 

small. 

 

Table 1. List of the model parameters and test conditions 

Item Description Symbol Unit Value 

1. Mass of the part of the vehicle body solid, “sprung 

mass” 

m1 kg 7 112 

2. Mass connected with the bogie frame, “unsprung mass” m2 kg 2 707 

3. Mass of the equivalent rail wheel mz kg 2 750 

4. Suspension stiffness k1 N/m 828 000 

5. Stiffness of the primary suspension system k2 N/m 1 760 000 

6. Damping coefficient of the secondary suspension 

system 

c1 N·s/m variable 

7. Damping coefficient of the primary suspension system c2 N·s/m 340 000 

8. Type and power spectral density parameters of the first 

test track 

Track 1:  

“good quality” 

– – 

9. Constant value that occurs in the formula (9) Ωc rad/m 0.8200 

10. Constant value that occurs in the formula (9) Ωr rad/m 0.0206 

11. Constant value that occurs in the formula (9) A m2∙rad/m 4.032e-07 

12. Type and power spectral density parameters of the 

second test track 

Track 2:  

“poor quality” 

– – 

13. Constant value that occurs in the formula (9) Ωc rad/m 0.8200 

14. Constant value that occurs in the formula (9) Ωr rad/m 0.0206 

15. Constant value that occurs in the formula (9) A m2∙rad/m 10.800e-07 

16. Minimum wavelength of track profile irregularities  Lmin m 2.5 

17. Maximum wavelength of track profile irregularities Lmax m 100.0 

18. Minimum Hertz (radian) frequency of the vibrations 

under analysis 

fmin 

(ωmin) 

Hz 

(rad/s) 

0 

(0) 

19. Maximum Hertz (radian) frequency of the vibrations 

under analysis 

fmax 

(ωmax) 

Hz 

(rad/s) 

80 

(502.65) 

20. The first natural Hertz (radian) frequency of the 

undamped system 

f01 

(ω01) 

Hz 

(rad/s) 

1.387 

(8.715) 

21. The second natural Hertz (radian) frequency of the 

undamped system 

f02 

(ω02) 

Hz 

(rad/s) 

5.024 

(31.567) 

22. Critical suspension damping coefficient c1kr N·s/m 123 970 

23. Vehicle speed range under analysis Vmin-Vmax 

(vmin-vmax) 

km/h 

(m/s) 

50.0-160.0  

(13.89-44.44) 

24. Vehicle speed sampling step ΔV 

(Δv) 

km/h 

(m/s) 

10.0 

(2.78) 

25. Minimum value of the relative suspension damping 

coefficient 

γmin – 0.2 

26. Maximum value of the relative suspension damping 

coefficient 

γmax – 0.7 

27. Sampling step of the relative suspension damping 

coefficient 

Δγ – 0.02 

28. Secondary suspension displacement limit rzg m 0.0985 
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Fig. 4. Absolute value of the spectral transmittance for sprung mass acceleration (see formulas (8) and (19), 

denoted by AHZ1B in the graph) vs. excitation frequency f, for various values of the relative damping 

coefficient (see formula (22), denoted by Gamt in the graph) 
 

a) b)  
Fig. 5. Absolute value of the spectral transmittance for the dynamic component of the vertical reaction at the 

wheel-rail contact (see formulas (17) and (20), denoted by AHFDZ in the graph) vs. excitation 

frequency f, for various values of the relative damping coefficient (see formula (22), denoted by Gamt 

in the graph): a) curve plotted for the whole range of variability of f and AHFDZ; b) magnified 

fragment of this curve for the frequency range 0-7 Hz 

 

Examples of power spectral density of track profile 

irregularities Sd (ω) for the track classified in ORE 

B176 (1989) as a track of “poor quality” have been 

shown (in a log-log scale) in Fig. 7 as functions of 

the radian frequency ω [rad/s] for various vehicle 

speeds (V = 50-160 km/h). The independent variable 

has been presented (after appropriate conversion) as 

excitation frequency f [Hz], exclusively for 

presentation needs, i.e. for easier comparisons with 

other graphs included in this study. An increase in 

the vehicle speed translates into a growth in the 

excitation frequencies f [Hz] corresponding to the 

lower and upper limit of the track profile wavelength 

L (2.5 m and 100 m, respectively). The lower 

frequency limit, corresponding to the wavelength of 

100 m, varies from 0.139 Hz for 50 km/h to 0.444 Hz 

for 160 km/h. Such changes are hardly noticeable in 

Fig. 7 due to the scale adopted. The changes in the 

upper frequency limit, corresponding to the 

wavelength of 2.5 m, can be easier noticed: the 

upper frequency limit changes from 5.556 Hz for 

50 km/h to 17.778 Hz for 160 km/h. A drop in the 

Sd (ω) for the upper frequency limit, corresponding 

to the shortest wavelength L = 2.5 m, can be seen as 

well. This is caused by the dividing of Sd (Ω) by 

vehicle speed v in order to obtain the Sd (ω) value, 

as mentioned in Section 6. 

 

Frequency f [Hz] 

Frequency f [Hz] Frequency f [Hz] 
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Fig. 6. Absolute value of the spectral transmittance 

for the deflection of the secondary 

suspension system (see formulas (18) and 

(21), denoted by AHUZ in the graph) vs. 

excitation frequency f, for various values of 

the relative damping coefficient (see formula 

(22), denoted by Gamt in the graph) 

 

Figs. 8, 9, and 10 show (in a log-log scale) power 

spectral densities as functions of excitation 

frequency f for the quantities that were taken as a 

basis for calculations of the criteria of assessment of 

the system under analysis. The graphs have been 

plotted for the track classified as “poor” according 

to ORE B176 (1989) and for a vehicle speed of 

V = 110 km/h. The curves differ from each other in 

the values of the relative suspension damping 

coefficient (see formula (20)). Fig. 8 shows the 

power spectral densities of sprung mass 

accelerations (see the element of integration in 

equation (12)), Fig. 9 shows the power spectral 

densities of the dynamic component of the vertical 

reaction at the wheel-rail contact (see the element of 

integration in equation (13)), and Fig. 10 shows the 

power spectral densities of the deflection of the 

secondary suspension system (see the element of 

integration in equation (14)). The analogical results 

obtained for the track classified as “good” according 

to ORE B176 (1989) are similar in qualitative terms; 

they differ from those related to the “poor” track in 

the values of the results obtained, which are lower in 

this case. 

In all the three drawings mentioned above, a distinct 

impact of the relative damping and of the resonance 

frequencies of the undamped system (1.387 Hz and 

5.024 Hz, especially the former one, as mentioned 

previously) on the shape of the curves plotted can be 

seen. For the sprung mass accelerations (Fig. 8), the 

impact of the damping was high for the first 

resonance (the damping reduced the power spectral 

density values) and in the zone above 2 Hz (where a 

growth in the damping caused the power spectral 

density to rise, and to a significant extent at that). 

For the dynamic component of the vertical reaction 

at the wheel-rail contact (Fig. 9), a growth in the 

damping reduced the power spectral density values 

in the first resonance zone and raised these values in 

the frequency range between 2 Hz and 8 Hz. This 

impact, however, was not very big at the frequencies 

exceeding 8 Hz. The values of the power spectral 

density of suspension deflection (Fig. 10) strongly 

depended on the suspension damping in the first 

resonance zone, where the dumping reduced the 

power spectral density values. 

Standard deviations of the quantities taken as criteria 

of assessment of the system under analysis have 

been presented in Figs. 11, 12, and 13 as functions 

of the relative damping coefficient (see formula 

(20)), for the track classified as “poor” according to 

ORE B176 (1989) and for 12 vehicle speed values 

ranging from 50 km/h to 160 km/h. In Figs. 11 

and 12, the minimums of the curves presented have 

been marked. 

 

 
Fig. 7. Power spectral densities of track profile 

irregularities Sd (ω) (denoted by SD2 in the 

graph) vs. the radian frequency ω [rad/s], 

presented as Hertz frequency f [Hz] of the 

excitation (for easier comparisons with 

other graphs), for the track classified as 

“poor” according to ORE B176 (1989) and 

for various vehicle speeds V [km/h] 

 

 

Frequency f [Hz] 
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Fig. 8. Power spectral densities of sprung mass 

accelerations (denoted by SZ1B in the 

graph, see the element of integration in 

equation (12)) vs. excitation frequency f, for 

various values of the relative damping 

coefficient (see formula (20), denoted by 

Gamt in the graph), for the track classified 

as “poor” according ORE B176 (1989) and 

for a vehicle speed of V = 110 km/h 
 

 
Fig. 9. Power spectral densities of the dynamic 

component of the vertical reaction at the 

wheel-rail contact (denoted by SFDZ in the 

graph, see the element of integration in 

equation (13)) vs. excitation frequency f, 

for various values of the relative damping 

coefficient (see formulas (20), denoted by 

Gamt in the graph), for the track classified 

as “poor” according to ORE B176 (1989) 

and for a vehicle speed of V = 110 km/h 

 
Fig. 10. Power spectral densities of suspension 

deflection (denoted by SUZ in the graph, 

see the element of integration in equation 

(14)) vs. excitation frequency f, for 

various values of the relative damping 

coefficient (see formulas (20), denoted by 

Gamt in the graph), for the track classified 

as “poor” according to ORE B176 (1989) 

and for a vehicle speed of V = 110 km/h 
 

Fig. 11 shows the standard deviations of sprung 

mass accelerations (see formula (12)), Fig. 12 shows 

the standard deviations of the dynamic component 

of the vertical reaction at the wheel-rail contact (see 

formula (13)), and Fig. 13 shows the standard 

deviations of the deflection of the secondary 

suspension system (see formula (14)). The 

analogical results obtained for the track classified as 

“good” according to ORE B176 (1989) are similar 

in qualitative terms; they differ from each other in 

the values of the results obtained (for the “good” 

track, these values are lower), but the locations of 

the minimums are identical. 

Fig. 13 clearly shows the existence of a monotonic 

trend towards lower values of the deflection of the 

secondary suspension system with increasing 

relative damping in this system. The intensity of this 

decrease, however, declines with the growth in the 

damping. 

Fig. 14 shows the relative damping coefficient 

values (see formula (20), denoted by Gamt in the 

graph) that correspond to minimums of the standard 

deviation of the deflection of the secondary 

suspension system (denoted by Sig Z1bis in the 

graph) and minimums of the standard deviation of 
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the dynamic component of the vertical reaction at 

the wheel-rail contact (denoted by Sig Fd in the 

graph) for the track classified as “poor” according to 

ORE B176 (1989) versus vehicle speed values, 

which ranged from 50 km/h to 160 km/h. The 

analogical graph plotted for the track classified as 

“good” according to ORE B176 (1989) has an 

identical form. 

Among the optimization criteria (10) and (11) 

proposed in Section 6, the one related to reduction 

in the working displacements of the suspension 

system (see formulas (11) and (14)) can be most 

easily applied and fulfilled. This is illustrated in 

Figs. 13a and 13b. The results considered as 

important are those obtained for the “poor quality” 

track (Fig. 13b). The value rzg = 0.0985 m (Table 1) 

divided by 6 (see equation (11) is 0.01642 m and is 

much higher (i.e. about 4.8 times as high) as the 

highest value of σuz (c1, V), which is about 0.0034, 

as presented in Fig. 13b. 
 

 
Fig. 11. Standard deviations of sprung mass accelerations (see (12), denoted by OSZB in the graph) vs. the 

relative damping coefficient (see formula (20), denoted by Gamt in the graph), for the track classified 

as “poor” according to ORE B176 (1989) and for 12 vehicle speed values ranging from 50 km/h to 

160 km/h; the marks indicate the minimums of the curves presented 
 

 
Fig. 12. Standard deviations of the dynamic component of the vertical reaction at the wheel-rail contact 

(see (13)), denoted by OSFDZ in the graph) vs. the relative damping coefficient (see formula (20), 

denoted by Gamt in the graph), for the track classified as “poor” according to ORE B176 (1989) and 

for 12 vehicle speed values ranging from 50 km/h to 160 km/h; the marks indicate the minimums of 

the curves presented 
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a) b) 

Fig. 13. Standard deviations of the deflection of the secondary suspension system (see (14), denoted by OSUZ 

in the graphs) vs. the relative damping coefficient (see formula (20), denoted by Gamt in the graphs), 

for the tracks classified as “good” (Fig. a) and “poor” (Fig. b) according to ORE B176 (1989) and for 

12 vehicle speed values ranging from 50 km/h to 160 km/h 
 

 
Fig. 14. Relative damping coefficient values (see formula (20), denoted by Gamt in the graph) that correspond 

to minimums of the standard deviation of the deflection of the secondary suspension system (denoted 

by Sig Z1bis in the graph) and minimums of the standard deviation of the dynamic component of the 

vertical reaction at the wheel-rail contact (denoted by Sig Fd in the graph) for the track classified as 

“poor” according to ORE B176 (1989) versus vehicle speed values, which ranged from 50 km/h to 

160 km/h 
 

The objective function Q (c1) (see formula (10)) 

would create greater difficulties. Due to different 

measures of σa and σF, the weighting factors wa and 

wF cannot be dimensionless quantities. This problem 

was solved in the work described in [23] by 

normalization of functions σa (c1, V) and σF (c1, V). 

Another approach may also be tried, i.e. an attempt 

may be made to minimize the functions σa (c1, V) 

and σF (c1, V) separately. 

The minimums of the standard deviations of sprung 

mass accelerations (Fig. 11) occurred for the relative 

damping coefficient values of a wide range from 

0.34 to 0.66 and they largely depended on the 

vehicle speed, especially for the lower speed values. 

With growing vehicle speed, they were shifted 

towards the lower damping values. This is also well 

illustrated in Fig. 14. The strong dependence of the 

optimum value of the relative damping coefficient in 

the secondary suspension system on the vehicle 

speed as well as the presence of distinct minimums 

in the curves shown in Fig. 11 indicates the 

advisability of making the damping in this 
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suspension system dependent on the vehicle speed 

in accordance with the Sig Z1bis (V) curve in 

Fig. 14. 

For the standard deviations of the dynamic 

component of the vertical reaction at the wheel-rail 

contact (Fig. 12), the minimums corresponded to the 

relative damping coefficient values ranging from 

0.28 to 0.38. With growing vehicle speed, they 

showed a trend towards the lower values of the 

relative damping coefficient and, when the speed 

exceeded the level of 100 km/h, they began to move 

towards the higher values of the relative damping 

coefficient. The impact of the relative damping in 

the secondary suspension system on the standard 

deviations of the dynamic component of the vertical 

reaction at the wheel-rail contact, however, is 

insignificant: the curves describing its dependence 

on the vehicle speed (Fig. 12) are very flat. Hence, 

is seems to be fully justifiable to adopt the average 

value of the relative damping coefficient, equal to 

0.33 (from the range of 0.28-0.38). The shapes of the 

curves presented in Figs. 11 and 12 (especially the 

flat shape of the curves in Fig. 12) provide grounds 

for giving priority to the criterion of the 

minimization of sprung mass acceleration. 

 

9. Conclusion 

In this study, over 40-year achievements of many 

foreign and Polish authors in the field of methods of 

optimizing the characteristics of passive suspension 

systems of vehicles have been summed up. Results 

of calculations carried out within work on the 

optimization of linear damping in the passive 

secondary suspension system of a railway vehicle 

moving on an uneven track with a random profile 

have been presented in detail. A half-vehicle model 

was used for this purpose. 

The calculation results have been presented in the 

form of an objective function, which was adopted as 

a criterion of the optimization in respect of ride 

comfort and safety. The limitation of deflections of 

the suspension system has been taken into account, 

too. 

The maximum suspension deflection values 

obtained and the described shapes of the curves that 

show the dependence of the criterial quantities on 

the vehicle speed and relative suspension damping 

coefficient provide grounds for giving priority to the 

criterion of the minimization of sprung mass 

acceleration. The presence of distinct minimums in 

the damping coefficient curves indicates the 

advisability of making the damping in the secondary 

suspension system dependent on the vehicle speed 

in accordance with the shape of the curve 

representing changes in this criterial function. 

The algorithms adopted for the calculations have a 

wider range of applicability; especially, they may be 

used for determining the optimum values of the 

other model parameters, i.e. stiffness of the 

secondary suspension system as well as stiffness and 

damping of the primary suspension system. 

The method presented is the first step in the process 

of optimizing the damping in the secondary 

suspension system of a railway vehicle. In further 

calculations, carried out with employing a half-

vehicle model, such issues as nonlinearities of spring 

characteristics of the suspension system, asymmetry 

and nonlinearities of shock absorber characteristics, 

dry friction in the suspension system, and wheel lift-

off should be taken into account. 

The next step should include the use of three-

dimensional vehicle motion models, which most 

accurately reflect the properties of a real vehicle. 
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