PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Review on Strain Monitoring of Aircraft : Using Optical Fibre Sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Structural health monitoring of aircraft assures safety, integrity and reduces cost-related concerns by reducing the number of times maintenance is required. Under aerodynamic loading, aircraft is subjected to strain, in turn causing damage and breakdown. This paper presents a review of experimental works, which focuses on monitoring strain of various parts of aircraft using optical fibre sensors. In addition, this paper presents a discussion and review on different types of optical fibre sensors used for structural health monitoring (SHM) of aircraft. However, the focus of this paper is on fibre bragg gratings (FBGs) for strain monitoring. Here, FBGs are discussed in detail because they have proved to be most viable and assuring technology in this field. In most cases of strain monitoring, load conditioning and management employs finite element method (FEM). However, more effort is still required in finding the accurate positions in real time where the sensors can be placed in the structure and responds under complex deformation.
Twórcy
  • Manipal Institute of Technology, Manipal Academy of Higher Education, India
  • Department of Electronics and Communication Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
Bibliografia
  • [1] C. Boller, State-of-the-art in structural health monitoring for aeronautics, Int. Symp. NDT Aerosp. (2008) 1–8. http://www.hf.faa.gov/docs/508/docs/drury_doc.pdf%5Cnhttp://citeseerx.ist.psu.edu/viedoc/download?doi=10.1.1.151.7689&rep=rep1&type=pdf
  • [2] H. Sohn, C.R. Farrar, F. Hemez, J. Czarnecki, A Review of structural health, Library.Lanl.Gov. (2001) 1–7. https://library.lanl.gov/cgi-bin/getfile?00796820.pdf
  • [3] J.P. Lynch, A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring, Shock Vib. Dig. 38 (2006) 91–128. https://doi.org/10.1177/0583102406061499
  • [4] J.D. Achenbach, Structural health monitoring - What is the prescription?, Mech. Res. Commun. 36 (2009) 137–142. https://doi.org/10.1016/j.mechrescom.2008.08.011
  • [5] S. Alla, S.S. Asadi, Integrated methodology of structural health monitoring for civil structures, Mater. Today Proc. 27 (2020) 1066–1072. https://doi.org/10.1016/j.matpr.2020.01.435
  • [6] H.N. Li, D.S. Li, L. Ren, T.H. Yi, Z.G. Jia, K.P. Li, Structural health monitoring of innovative civil engineering structures in Mainland China, Struct. Monit. Maint. 3 (2016) 1–32. https://doi.org/10.12989/smm.2016.3.1.001
  • [7] G. Prakash, A. Sadhu, S. Narasimhan, J.M. Brehe, Initial service life data towards structural health monitoring of a concrete arch dam, Struct. Control Heal. Monit. 25 (2018) 1–19. https://doi.org/10.1002/stc.2036
  • [8] P. Bukenya, P. Moyo, H. Beushausen, C. Oosthuizen, Health monitoring of concrete dams: A literature review, J. Civ. Struct. Heal. Monit. 4 (2014) 235–244. https://doi.org/10.1007/s13349-014-0079-2
  • [9] T. Harms, S. Sedigh, F. Bastianini, Structural Health Monitoring of Bridges Using Wireless Sensor Networks, IEEE Instrum. Meas. Mag. 13 (2010) 14–18. https://doi.org/10.1109/MIM.2010.5669608
  • [10] J. Liu, S. Chen, M. Bergés, J. Bielak, J.H. Garrett, J. Kovačević, H.Y. Noh, Diagnosis algorithms for indirect structural health monitoring of a bridge model via dimensionality reduction, Mech. Syst. Signal Process. 136 (2020). https://doi.org/10.1016/j.ymssp.2019.106454
  • [11] M. Vagnoli, R. Remenyte-Prescott, J. Andrews, Railway bridge structural health monitoring and fault detection: State-of-the-art methods and future challenges, Struct. Heal. Monit. 17 (2018) 971–1007. https://doi.org/10.1177/1475921717721137
  • [12] C. Vendittozzi, G. De Canio, I. Aerospaziale, C. Paris, A. Colucci, Smasis2015-8922, Struct. Heal. Monit. Pipelines Environ. Pollut. Mitig. (2017) 1–7.
  • [13] S. Beskhyroun, L.D. Wegner, B.F. Sparling, Integral resonant control scheme for cancelling human-induced vibrations in light-weight pedestrian structures, Struct. Control Heal. Monit. (2011) n/a-n/a. https://doi.org/10.1002/stc
  • [14] N.M. Okasha, D.M. Frangopol, A. Decò, Integration of structural health monitoring in life-cycle performance assessment of ship structures under uncertainty, Mar. Struct. 23 (2010) 303–321. https://doi.org/10.1016/j.marstruc.2010.07.004
  • [15] A. Kefal, An efficient curved inverse-shell element for shape sensing and structural health monitoring of cylindrical marine structures, Ocean Eng. 188 (2019) 106262. https://doi.org/10.1016/j.oceaneng.2019.106262
  • [16] J. Solimine, C. Niezrecki, M. Inalpolat, An experimental investigation into passive acoustic damage detection for structural health monitoring of wind turbine blades, Struct. Heal. Monit. 19 (2020) 1711–1725. https://doi.org/10.1177/1475921719895588
  • [17] F. Lorenzoni, M. Caldon, F. da Porto, C. Modena, T. Aoki, Post-earthquake controls and damage detection through structural health monitoring: applications in l’Aquila, J. Civ. Struct. Heal. Monit. 8 (2018) 217–236. https://doi.org/10.1007/s13349-018-0270-y
  • [18] C. Boller, Ways and options for aircraft structural, Smart Mater. Struct. 10 (2001) 432–440.
  • [19] B.L. Shang, B.F. Song, F. Chang, New sensor technologies in aircraft structural health monitoring, Proc. 2008 Int. Conf. Cond. Monit. Diagnosis, C. 2008. (2008) 701–704. https://doi.org/10.1109/CMD.2008.4580381
  • [20] T. Yari, M. Ishioka, K. Nagai, M. Ibaragi, K. Hotate, Y. Koshioka, Monitoring Aircraft Structural Health Using Optical Fiber Sensors, Tech. Rev. 45 (2008).
  • [21] H. Guo, G. Xiao, N. Mrad, J. Yao, Fiber optic sensors for structural health monitoring of air platforms, Sensors. 11 (2011) 3687–3705. https://doi.org/10.3390/s110403687
  • [22] K.S.C. Kuang, S.T. Quek, C.G. Koh, W.J. Cantwell, P.J. Scully, Plastic optical fibre sensors for structural health monitoring: A review of recent progress, J. Sensors. 2009 (2009). https://doi.org/10.1155/2009/312053
  • [23] J.M. López-Higuera, L.R. Cobo, A.Q. Incera, A. Cobo, Fiber optic sensors in structural health monitoring, J. Light. Technol. 29 (2011) 587–608. https://doi.org/10.1109/JLT.2011.2106479
  • [24] R. Di Sante, Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications, Sensors (Switzerland). 15 (2015) 18666-18713. https://doi.org/10.3390/s150818666
  • [25] A. Güemes, A. Fernández-López, P.F. Díaz-Maroto, A. Lozano, J. Sierra-Perez, Structural health monitoring in composite structures by fiber-optic sensors, Sensors (Switzerland). 18 (2018) 1–11. https://doi.org/10.3390/s18041094
  • [26] P.D. Mangalgiri, Corrosion issues in structural health monitoring of aircraft, ISSS J. Micro Smart Syst. 8 (2019) 49–78. https://doi.org/10.1007/s41683-019-00035-z
  • [27] G. McAdam, P.J. Newman, I. McKenzie, C. Davis, B.R.W. Hinton, Fiber optic sensors for detection of corrosion within aircraft, Struct. Heal. Monit. 4 (2005) 47–56. https://doi.org/10.1177/1475921705049745
  • [28] J.A. Greene, M.E. Jones, T.A. Bailey, I.M. Perez, Optical fiber corrosion sensors for aging aircraft, Process Control Sensors Manuf. 3399 (1998) 28. https://doi.org/10.1117/12.302561
  • [29] K.R. Cooper, J. Elster, M. Jones, R.G. Kelly, Optical fiber-based corrosion sensor systems for health monitoring of aging aircraft, AUTOTESTCON (Proceedings). (2001) 847–856. https://doi.org/10.1109/autest.2001.949466
  • [30] J. Jiang, S. Wang, K. Liu, X. Zhang, J. Yin, F. Wu, T. Liu, Development of optical fiber temperature sensor for aviation industry, ICOCN 2016 - 2016 15th Int. Conf. Opt. Commun. Networks. (2017) 15–17. https://doi.org/10.1109/ICOCN.2016.7875863
  • [31] X. Xu, J. He, C. Liao, Y. Wang, Sapphire fiber bragg gratings with improved spectral properties for high-temperature measurements, 2019 Photonics Electromagn. Res. Symp. - Fall, PIERS - Fall 2019 - Proc. (2019) 2080–2084. https://doi.org/10.1109/PIERS-Fall48861.2019.9021688
  • [32] S. Guanghui, G. Chao, Z. Lei, Thermal control system design of the demodulator for fiber optic sensors, ICOCN 2016 - 2016 15th Int. Conf. Opt. Commun. Networks. (2017) 15–17. https://doi.org/10.1109/ICOCN.2016.7875785
  • [33] N.J. Lawson, R. Correia, S.W. James, M. Partridge, S.E. Staines, J.E. Gautrey, K.P. Garry, J.C. Holt, R.P. Tatam, Development and application of optical fibre strain and pressure sensors for in-flight measurements, Meas. Sci. Technol. 27 (2016) 104001. https://doi.org/10.1088/0957-0233/27/10/104001
  • [34] E. Udd, D. Nelson, C. Lawrence, Three Axis Strain and Temperature Fiber Optic Grating Sensor Multiple Axis Strain and Temperature Measurement Using Fiber Gratings, 2718 (n.d.) 104–109.
  • [35] E.A. Badeeva, T.I. Murashkina, D.I. Serebryakov, T.Y. Brostilova, I.E. Slavkin, Fiber-Optic Pressure Sensors with an Open Optical Channel for Rocket-Space and Aviation Engineering, 2019 Int. Semin. Electron Devices Des. Prod. SED 2019 - Proc. (2019) 1–4. https://doi.org/10.1109/SED.2019.8798469
  • [36] J. Degrieck, W. De Waele, P. Verleysen, Monitoring of fibre reinforced composites with embedded optical fibre Bragg sensors, with application to filament wound pressure vessels, NDT E Int. 34 (2001) 289–296. https://doi.org/10.1016/S0963-8695(00)00069-4
  • [37] S.F. Knowles, B.E. Jones, S. Purdy, C.M. France, Multiple microbending optical-fibre sensors for measurement of fuel quantity in aircraft fuel tanks, Sensors Actuators, A Phys. 68 (1998) 320–323. https://doi.org/10.1016/S0924-4247(98)00030-2
  • [38] N. Takeda, Y. Okabe, T. Mizutani, Damage detection in composites using optical fibre sensors, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221 (2007) 497–508. https://doi.org/10.1243/09544100JAERO148
  • [39] L. Pellone, M. Ciminello, B. Galasso, U. Mercurio, G. Apuleo, A. Cozzolino, A. Concilio, Detecting of bonding defects using an SHM fiber-optics distributed sensors system in typical wing spar coupon, Fract. DAMAGE Mech. Theory, Simul. Exp. 2309 (2020) 020028. https://doi.org/10.1063/5.0035009
  • [40] H.B. Liu, H.Y. Liu, G.D. Peng, P.L. Chu, Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings, Opt. Commun. 219 (2003) 139–142. https://doi.org/10.1016/S0030-4018(03)01313-0
  • [41] S. Takeda, S. Minakuchi, Y. Okabe, N. Takeda, Delamination monitoring of laminated composites subjected to low-velocity impact using small-diameter FBG sensors, Compos. Part A Appl. Sci. Manuf. 36 (2005) 903–908. https://doi.org/10.1016/j.compositesa.2004.12.005
  • [42] R. Sundaram, G.M. Kamath, N. Gupta, M.S. Rao, Structural health monitoring of co-cured composite structures using FBG sensors, Smart Struct. Mater. 2005 Smart Struct. Integr. Syst. 5764 (2005) 559. https://doi.org/10.1117/12.597261
  • [43] N. Mrad, Potential of bragg grating sensors for aircraft health monitoring, Trans. Can. Soc. Mech. Eng. 31 (2007) 1–17. https://doi.org/10.1139/tcsme-2007-0001
  • [44] H. Soejima, T. Ogisu, H. Yoneda, Y. Okabe, N. Takeda, Y. Koshioka, Demonstration of detectability of SHM system with FBG/PZT hybrid system in composite wing box structure, Sensors Smart Struct. Technol. Civil, Mech. Aerosp. Syst. 2008. 6932 (2008) 69322E. https://doi.org/10.1117/12.776078
  • [45] N. Takeda, Fiber optic sensor-based SHM technologies for aerospace applications in Japan, Smart Sens. Phenomena, Technol. Networks, Syst. 2008. 6933 (2008) 693302. https://doi.org/10.1117/12.776838
  • [46] T. Ogisu, M. Shimanuki, S. Kiyoshima, Y. Okabe, N. Takeda, Development of damage monitoring system for aircraft structure using a PZT actuator/FBG sensor hybrid system, Smart Struct. Mater. 2004 Ind. Commer. Appl. Smart Struct. Technol. 5388 (2004) 425. https://doi.org/10.1117/12.539727
  • [47] T.P. Jones, T. Thorvaldsen, G. Sagvolden, K. Pran, T. Olsen, Bond strength and performance of optical fibre bragg gratings sensors embedded in composite patch repairs for military aircraft, 8th Eur. Work. Struct. Heal. Monit. EWSHM 2016. 2 (2016) 910–920.
  • [48] K. Takahashi, H. Soejima, M. Hiraki, N. Takeda, H. Kojima, Development of FBG-MFC hybrid SHM system for aircraft composite structures in collaboration study with Airbus, 8th Eur. Work. Struct. Heal. Monit. EWSHM 2016. 2 (2016) 1487–1496.
  • [49] M.J. Nicolas, R.W. Sullivan, W.L. Richards, Large scale applications using FBG sensors: Determination of in-flight loads and shape of a composite aircraft wing, Aerospace. 3 (2016). https://doi.org/10.3390/aerospace3030018
  • [50] Y. Wang, L. Qiu, Y. Luo, R. Ding, F. Jiang, A piezoelectric sensor network with shared signal transmission wires for structural health monitoring of aircraft smart skin, Mech. Syst. Signal Process. 141 (2020) 106730. https://doi.org/10.1016/j.ymssp.2020.106730
  • [51] Z. Ma, X. Chen, Fiber bragg gratings sensors for aircraft wing shape measurement: Recent applications and technical analysis, Sensors (Switzerland). 19 (2019). https://doi.org/10.3390/s19010055
  • [52] K. Bednarska, P. Sobotka, T.R. Woliński, O. Zakrecka, W. Pomianek, A. Nocoń, P. Lesiak, Hybrid fiber optic sensor systems in structural health monitoring in aircraft structures, Materials (Basel). 13 (2020) 1–17. https://doi.org/10.3390/ma13102249
  • [53] Y. Zhou, D. Liu, D. Li, Y. Zhao, M. Zhang, W. Zhang, Review on Structural Health Monitoring in Metal Aviation Based on Fiber Bragg Grating Sensing Technology, Proc. - 2020 Progn. Heal. Manag. Conf. PHM-Besancon 2020. (2020) 97–102. https://doi.org/10.1109/PHM-Besancon49106.2020.00022
  • [54] S.N.A. Safri, M.T.H. Sultan, N. Yidris, F. Mustapha, Low velocity and high velocity impact test on composite materials – A review, Int. J. Eng. Sci. 3 (2014) 50–60. https://doi.org/10.1177/1464420711409985
  • [55] M. Majumder, T.K. Gangopadhyay, A.K. Chakraborty, K. Dasgupta, D.K. Bhattacharya, Fibre Bragg gratings in structural health monitoring-Present status and applications, Sensors Actuators, A Phys. 147 (2008) 150–164. https://doi.org/10.1016/j.sna.2008.04.008
  • [56] C.A. Ramos, R. De Oliveira, A.T. Marques, Design of an optical fibre sensor patch for longitudinal strain measurement in structures, Mater. Des. 30 (2009) 2323–2331. https://doi.org/10.1016/j.matdes.2008.11.008
  • [57] F. Bosia, P. Giaccari, J. Botsis, M. Facchini, H.G. Limberger, R.P. Salathé, Characterization of the response of fibre Bragg grating sensors subjected to a two-dimensional strain field, Smart Mater. Struct. 12 (2003) 925–934. https://doi.org/10.1088/0964-1726/12/6/009
  • [58] C.A. Ramos, R. de Oliveira, A.T. Marques, Design of an optical fibre sensor patch for longitudinal strain measurement in structures, Mater. Des. 30 (2009) 2323–2331. https://doi.org/10.1016/j.matdes.2008.11.008
  • [59] F. Grooteman, Multiple load path damage detection with optical fiber Bragg grating sensors, (2020). https://doi.org/10.1177/1475921720919678
  • [60] Y.J. Rao, Recent progress in applications of in-fibre Bragg grating sensors, Opt. Lasers Eng. 31 (1999) 297–324. https://doi.org/10.1016/S0143-8166(99)00025-1
  • [61] S. Materials, us pt, (2019).
  • [62] Y. Zhao, Y. Zhu, M. Yuan, J. Wang, S. Zhu, A Laser - based Fiber Bragg Grating Ultrasonic Sensing System for Structural Health Monitoring, 1135 (2016). https://doi.org/10.1109/LPT.2016.2605699
  • [63] Y.J. Rao, In-fibre Bragg grating sensors, Meas. Sci. Technol. 8 (1997) 355–375. https://doi.org/10.1088/0957-0233/8/4/002
  • [64] A. Othonos, Bragg Gratings in Optical Fibers: Fundamentals and Applications, Opt. Fiber Sens. Technol. (2000) 79–187. https://doi.org/10.1007/978-1-4757-6079-8_2
  • [65] R. Of, F.G. Plate, A.T. Different, A. Stress, Jurnal Teknologi AT DIFFERENT APPLIED STRESS LOCATION, 3 (2016) 217–223.
  • [66] N. Lvov, S. Khabarov, A. Todorov, A. Barabanov, Versions of Fiber-Optic Sensors for Monitoring the Technical Condition of Aircraft Structures, Civ. Eng. J. 4 (2018) 2895. https://doi.org/10.28991/cej-03091206
  • [67] I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M.A. Illarramendi, J. Villatoro, Optical fiber sensors for aircraft structural health monitoring, Sensors (Switzerland). 15 (2015) 15494–15519. https://doi.org/10.3390/s150715494
  • [68] R. Ramly, W. Kuntjoro, Using Embedded F iber Bragg Grating ( FBG ) Senso ors in Smart Aircraft Structure Materials, 41 (2012) 600–606. https://doi.org/10.1016/j.proeng.2012.07.218
  • [69] R. Di Sante, L. Donati, Strain monitoring with embedded Fiber Bragg Gratings in advanced composite structures for nautical applications, Meas. J. Int. Meas. Confed. 46 (2013) 2118–2126. https://doi.org/10.1016/j.measurement.2013.03.009
  • [70] M. Schroeck, W. Ecke, A. Graupner, Strain monitoring in steel rock bolts using FBG sensor arrays, Appl. Opt. Fiber Sensors. 4074 (2000) 298. https://doi.org/10.1117/12.397895
  • [71] K.T. Lau, C.C. Chan, L.M. Zhou, W. Jin, Strain monitoring in composite-strengthened concrete structures using optical fibre sensors, Compos. Part B Eng. 32 (2001) 33–45. https://doi.org/10.1016/S1359-8368(00)00044-5
  • [72] K.T. Lau, L. Yuan, L.M. Zhou, J. Wu, C.H. Woo, Strain monitoring in FRP laminates and concrete beams using FBG sensors, Compos. Struct. 51 (2001) 9–20. https://doi.org/10.1016/S0263-8223(00)00094-5
  • [73] S. Kabashima, T. Ozaki, N. Takeda, Structural health monitoring using FBG sensor in space environment, 4332 (2001) 4–6.
  • [74] W. Chung, D. Kang, Full-scale test of a concrete box girder using FBG sensing system, Eng. Struct. 30 (2008) 643–652. https://doi.org/10.1016/j.engstruct.2007.05.003
  • [75] S.R.K. Morikawa, C.S. Camerini, D.R. Pipa, J.M.C. Santos, G.P. Pires, A.M.B. Braga, R.W.A. Llerena, A.S. Ribeiro, Monitoring of flexible oil lines using FBG sensors, 19th Int. Conf. Opt. Fibre Sensors. 7004 (2008) 70046F. https://doi.org/10.1117/12.786019
  • [76] S.H. Eum, K. Kageyama, H. Murayama, K. Uzawa, I. Ohsawa, M. Kanai, H. Igawa, Process/health monitoring for wind turbine blade by using FBG sensors with multiplexing techniques, 19th Int. Conf. Opt. Fibre Sensors. 7004 (2008) 70045B. https://doi.org/10.1117/12.786240
  • [77] D. Karalekas, J. Cugnoni, J. Botsis, Monitoring of hygrothermal ageing effects in an epoxy resin using FBG sensor: A methodological study, Compos. Sci. Technol. 69 (2009) 507–514. https://doi.org/10.1016/j.compscitech.2008.11.028
  • [78] J. Frieden, J. Cugnoni, J. Botsis, T. Gmür, D. Ćorić, High-speed internal strain measurements in composite structures under dynamic load using embedded FBG sensors, Compos. Struct. 92 (2010) 1905–1912. https://doi.org/10.1016/j.compstruct.2010.01.007
  • [79] H.H. Zhu, J.H. Yin, L. Zhang, W. Jin, J.H. Dong, Monitoring internal displacements of a model dam using FBG sensing bars, Adv. Struct. Eng. 13 (2010) 249–261. https://doi.org/10.1260/1369-4332.13.2.249
  • [80] A. Papantoniou, G. Rigas, N.D. Alexopoulos, Assessment of the strain monitoring reliability of fiber Bragg grating sensor (FBGs) in advanced composite structures, Compos. Struct. 93 (2011) 2163–2172. https://doi.org/10.1016/j.compstruct.2011.03.001
  • [81] S. ichi Takeda, Y. Aoki, Y. Nagao, Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors, Compos. Struct. 94 (2012) 813–819. https://doi.org/10.1016/j.compstruct.2011.02.020
  • [82] C. Rodrigues, F. Cavadas, C. Félix, J. Figueiras, FBG based strain monitoring in the rehabilitation of a centenary metallic bridge, Eng. Struct. 44 (2012) 281–290. https://doi.org/10.1016/j.engstruct.2012.05.040
  • [83] H.J. Bang, S.W. Ko, M.S. Jang, H. Il Kim, Shape estimation and health monitoring of wind turbine tower using a FBG sensor array, 2012 IEEE I2MTC - Int. Instrum. Meas. Technol. Conf. Proc. (2012) 496–500. https://doi.org/10.1109/I2MTC.2012.6229407
  • [84] X. Ye, Y. Ni, J. Yin, Safety monitoring of railway tunnel construction using FBG sensing technology, Adv. Struct. Eng. 16 (2013) 1401–1409. https://doi.org/10.1260/1369-4332.16.8.1401
  • [85] D. Kang, D.H. Kim, S. Jang, Design and development of structural health monitoring system for smart railroad-gauge-facility using FBG sensors, Exp. Tech. 38 (2014) 39–47. https://doi.org/10.1111/j.1747-1567.2012.00844.x
  • [86] Q. Hou, W. Jiao, L. Ren, H. Cao, G. Song, Experimental study of leakage detection of natural gas pipeline using FBG based strain sensor and least square support vector machine, J. Loss Prev. Process Ind. 32 (2014) 144–151. https://doi.org/10.1016/j.jlp.2014.08.003
  • [87] G.W. Li, H.F. Pei, J.H. Yin, X.C. Lu, J. Teng, Monitoring and analysis of PHC pipe piles under hydraulic jacking using FBG sensing technology, Meas. J. Int. Meas. Confed. 49 (2014) 358–367. https://doi.org/10.1016/j.measurement.2013.11.046
  • [88] W. Shen, R. Yan, L. Xu, G. Tang, X. Chen, Application study on FBG sensor applied to hull structural health monitoring, Optik (Stuttg). 126 (2015) 1499–1504. https://doi.org/10.1016/j.ijleo.2015.04.046
  • [89] R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, J. Rohollahnejad, Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring, IEEE Photonics Technol. Lett. 27 (2015) 1577–1580. https://doi.org/10.1109/LPT.2015.2406112
  • [90] C.Y. Hong, Y.F. Zhang, M.X. Zhang, L.M.G. Leung, L.Q. Liu, Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques, Sensors Actuators, A Phys. 244 (2016) 184–197. https://doi.org/10.1016/j.sna.2016.04.033
  • [91] W. Li, C. Xu, S.C.M. Ho, B. Wang, G. Song, Monitoring concreto deterioration due to reinforcement corrosion by integrating acoustic emission and FBG strain measurements, Sensors (Switzerland). 17 (2017) 1–12. https://doi.org/10.3390/s17030657
  • [92] L. Sun, C. Li, C. Zhang, T. Liang, Z. Zhao, The strain transfer mechanism of fiber bragg grating sensor for extra large strain monitoring, Sensors (Switzerland). 19 (2019). https://doi.org/10.3390/s19081851
  • [93] C.Y. Ryu, J.R. Lee, C.G. Kim, C.S. Hong, Buckling behavior monitoring of a composite wing box using multiplexed and multi-channeled built-in fiber Bragg grating strain sensors, NDT E Int. 41 (2008) 534–543. https://doi.org/10.1016/j.ndteint.2008.05.001
  • [94] D. Wada, H. Igawa, M. Tamayama, T. Kasai, H. Arizono, H. Murayama, Flight demonstration of aircraft wing monitoring using optical fiber distributed sensing system, Smart Mater. Struct. 28 (2019). https://doi.org/10.1088/1361-665X/aae411
  • [95] A. Cusano, P. Capoluongo, S. Campopiano, A. Cutolo, M. Giordano, F. Felli, A. Paolozzi, M. Caponero, Experimental modal analysis of an aircraft model wing by embedded fiber bragg grating sensors, IEEE Sens. J. 6 (2006) 67–77. https://doi.org/10.1109/JSEN.2005.854152
  • [96] H. Kwon, Y. Park, J.H. Kim, C.G. Kim, Embedded fiber Bragg grating sensor–based wing load monitoring system for composite aircraft, Struct. Heal. Monit. 18 (2019) 1337–1351. https://doi.org/10.1177/1475921719843772
  • [97] J.R. Lee, C.Y. Ryu, B.Y. Koo, S.G. Kang, C.S. Hong, C.G. Kim, In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system, Smart Mater. Struct. 12 (2003) 147–155. https://doi.org/10.1088/0964-1726/12/1/317
  • [98] Z. Ma, X. Chen, Strain transfer characteristics of surface-attached FBGs in aircraft wing distributed deformation measurement, Optik (Stuttg). 207 (2020) 164468. https://doi.org/10.1016/j.ijleo.2020.164468
  • [99] D.-H. Kim, K.-H. Lee, B.-J. Ahn, J.-H. Lee, S.-K. Cheong, I.-H. Choi, Strain and damage monitoring in solar-powered aircraft composite wing using fiber Bragg grating sensors, Sensors Smart Struct. Technol. Civil, Mech. Aerosp. Syst. 2013. 8692 (2013) 869222. https://doi.org/10.1117/12.2009232
  • [100] S. Takeda, Y. Aoki, T. Ishikawa, N. Takeda, H. Kikukawa, Structural health monitoring of composite wing structure during durability test, Compos. Struct. 79 (2007) 133–139. https://doi.org/10.1016/j.compstruct.2005.11.057
  • [101] G. Durana, H. Poisel, J. Zubia, I. Saez, J. Gomez, Monitoring the vertical deflection of a flap rudder using a novel fibre optical strain sensor, 18th Int. Conf. Plast. Opt. Fibers. 9 (2009) 3–7.
  • [102] T. Bergmayr, M. Winklberger, C. Kralovec, M. Schagerl, Strain measurements along zero-strain trajectories as possible structural health monitoring method for debonding initiation and propagation in aircraft sandwich structures, Procedia Struct. Integr. 28 (2020) 1473–1480. https://doi.org/10.1016/j.prostr.2020.10.121
  • [103] J.M. Menendez, I. Fernandez, J.M. Pintado, Experimental analysis of buckling in J A G uemes, 10 (n.d.) 490–496.
  • [104] D. Wada, H. Igawa, M. Tamayama, T. Kasai, H. Arizono, H. Murayama, K. Shiotsubo, Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system, Smart Mater. Struct. 27 (2018). https://doi.org/10.1088/1361-665X/aaa588
  • [105] K.I. Tserpes, V. Karachalios, I. Giannopoulos, V. Prentzias, R. Ruzek, Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part I: Design, manufacturing and impact testing, Compos. Struct. 107 (2014) 726–736. https://doi.org/10.1016/j.compstruct.2013.09.053
  • [106] R. Ruzek, P. Kudrna, M. Kadlec, V. Karachalios, K.I. Tserpes, Strain and damage monitoring in CFRP fuselage panels using fiber Bragg grating sensors. Part II: Mechanical testing and validation, Compos. Struct. 107 (2014) 737–744. https://doi.org/10.1016/j.compstruct.2013.09.056
  • [107] A. Iadicicco, D. Natale, P. Di Palma, F. Spinaci, A. Apicella, S. Campopiano, Strain monitoring of a composite drag strut in aircraft landing gear by fiber bragg grating sensors, Sensors (Switzerland). 19 (2019) 1–13. https://doi.org/10.3390/s19102239
  • [108] A. Iele, M. Leone, M. Consales, G. V. Persiano, A. Brindisi, S. Ameduri, A. Concilio, M. Ciminello, A. Apicella, F. Bocchetto, A. Cusano, Load monitoring of aircraft landing gears using fiber optic sensors, Sensors Actuators, A Phys. 281 (2018) 31–41. https://doi.org/10.1016/j.sna.2018.08.023
  • [109] F. Application, P. Data, ( 12 ) United States Patent ( 10 ) Patent No .:, 2 (2012) 6–9.
  • [110] G.S. Shipunov, A.A. Voronkov, K.A. Pelenev, D. V. Golovin, Estimating the accuracy of the indications of fiber-optic sensors based on Bragg gratings when testing the outlet guide vane from carbon fiber, AIP Conf. Proc. 2051 (2018) 1–5. https://doi.org/10.1063/1.5083522
  • [111] A. Voronkov, N. Kosheleva, K. Pelenev, Experimental Study of the Stress-Strain State Features of Outlet Guide Vane Made from Polymer Composite Material Using Fiber Optic Sensors, 2018 Int. Multi- Conference Ind. Eng. Mod. Technol. FarEastCon 2018. (2018) 1–5. https://doi.org/10.1109/FarEastCon.2018.8602618
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a239f26-8009-4605-9412-e678fb87d81a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.