
SSARS 2010
Summer Safety and Reliability Seminars, June 20-26, 2010, Gdańsk-Sopot, Poland

 181

1. Introduction

In the K2® ERP (Enterprise resource planning)
system, the human operator can see the screen with
the tree structure and graph. The tree structure
content includes the items of the production process.
These items differ in its kind. The superior element
of the production items is operation, which belongs
to the specific document called job card.
The two dimensional graph contains the inferior
elements of the production item called the source.
These items have subordinate items, that are called
the calendars, describe the capacitive availability of
the source item in the specific time interval.
Generally, the x-axis depicts the constant time
interval selected in advance and the y-axis shows the
sources names, which depends on the topically
chosen tree item. If we choose the superior operation
or the job card type item in the tree, the graph must
show all sources subordinated to the specifically
chosen operation or job card.
Each calendar is depicted as a gantt. Gantt is the
special chart series type; it’s a dash with predefined
color. For gantt series type, we ignore its y size and
take into account only length in x. Gantts cannot
overlap with each other; every single gantt has its
unique position [1].
User can adjust the type of gantt description by
clicking on the graph menu option. It is allowed to
have the number and name of the superior job card

or name of the final product. This gets us to the main
point of problem.

2. Description

In the usual practice, user almost always wants to
have some type of gantt description to be pictured.
The reason to do this is that the gantts accompanied
with the text give us better lay out of the planned
calendars and their assignment to the specified job
card. Text labeled gantts stop being “anonymous”
and enable user to have convenient feedback.
If the number of gantts in a graph is small enough,
maximally up to 100, there is no problem to develop
the algorithm of displaying the gantt descriptions
without overlapping each other. If the number of
gantts is small enough, we do not have to take into
account the elapsed computation time, because the
computation takes negligible amount of time.
Problems with inadequate long computation time
occur in the real world usually. If there is around 103

gantts in the graph, the computation can take up to
one minute (for the pc, where test took place) in the
case of badly optimized algorithm. Too long time
makes the screen “stack” without any logical
response to the operator. It is necessary to know, that
the procedure of displaying gantt descriptions is
called not only if the user choose the tree item, but
also in the arbitrary operations in the graph itself.
User operations in the graph comprise zooming,

Nedbalek Jakub
VŠB – Technical University of Ostrava, Ostrava Poruba, Czech Republic

New type of neural networks for rendering graph points

Keywords

description, gantt, graph, RBF 2 neural network

Abstract

The paper demonstrates new approach of rendering the graph point series called gantts. The gantts are placed
in the two dimensional graph which contains the information about available production sources in the real
manufacturing process. The gantt is defined as one dimensional coloured dash which has unique position. To
have the interaction with a user, gantts are accompanied with the description text giving detailed information
about each gantt. All gantt descriptions must be displayed without overlapping with each other. To optimize
this task, the modified version of the RBF neural network with biases is applied. With respect to the similarity
to the RBF structure, the new type of neural network is named RBF 2. We also give the picture of positive and
negative attributes of the solution based on the neural network architecture.

Nedbalek Jakub
New type of neural networks for graph points rendering

 182

scrolling and other similar actions that urge to
refresh the position of gantt descriptions because
these actions also change the position of gantts
themselves.
There is also another problem with a large number
of gantts in the graph. If we have too many gantts in
the graph, there is a high chance of descriptions
overlapping. That provides an uneasy survey for the
user.
The target is to create the algorithm, which correctly
assigns the description to the gantt without any
overlapping of descriptions themselves. In the
algorithm, there should be also taken into account
the time necessary to compute the result. This means
that the algorithm should be written with regard to
the operator who needs to obtain results as quickly
as possible. It is also suitable to depict as many non-
overlapping gantt descriptions in the graph as
possible to give the operator completed information
about available items.
The paper is derived from [2] but corrects the
potential mistakes in the previous solution and
shows new prospects of the RBF 2 structure.
Our solution is applied in the Production module of
the K2® ERP system. With respect to the computer
language in which the software itself is written, the
neural network is implemented in Delphi code.

2. The solution proposal

The main task of our neural network is to classify,
which gantt belongs to the input point according to
the criteria of least distance between the point and
gantt. The point equals to the last point of the gantt
description to which we need to find either a) the
nearest non – colliding gantt with higher x
coordinate (forward direction) or b) the nearest gantt
description on a lower y coordinate (backward
direction). Result of the forward check is the gantt
(with higher x coordinate), which description we
want to display (the gantt is not covered with
previously displayed description). The result of the
backward check is the gantt (with lower y
coordinate), which description could collide with the
already displayed description that is obtained by the
forward check. Whether the description will be
shown in the graph depends on the result of the
geometry comparison of border points.

To tackle the problem of descriptions overlapping, it
is possible to apply the RBF 2 neural network. Its
architecture was evolved from the well known RBF
[3], [4]. See the Figure 1.

Figure 1. The RBF 2 neural network.

This network consists of three layers – distributive,
hidden and output one.

2.1. Distributive layer

The distributive layer serves to transfer the signal
from the input to the hidden layer. The ordered pair
of numbers [xi, yi] (gantt is placed in two
dimensional graph) is distributed to the i-th neuron.
If the input vector has two coordinates, the
distributive layer will have two inputs.

2.2. Hidden layer

The hidden layer contains the neurons with the
activation function. The possible activation function
can be

[5] (1)

which describes distance between the c center of a
neuron and the arbitrary x input [3], [4]. The c
center denotes to the vector, to which the neuron is
trained and describes the pattern that is compared
with an input. Practically, the c center refers to the
gantt position.
Relation (1) is possible solution for the hidden layer
of a standard RBF network. Finally, with respect to
the time spare, the altered relation (1) was applied.
The modification consists in the fact, that the square
can be neglected in the case, if we know when the
x input is less than c center (we know that because
the gantts have ascending order according to their
position). The sum across i is also ignored as we
take into account only one coordinate (distance is
counted separately for each coordinate – the
collision can occur for x and y independently).

∑
=

−=
n

i
ii cxy

1

2*)(

SSARS 2010
Summer Safety and Reliability Seminars, June 20-26, 2010, Gdańsk-Sopot, Poland

 183

Our modified network activation function for the x
axis equals

 cx −=ϕ for cx ≥ , (2)

 1minmax +−= GrafxGrafxϕ for xc > , (3)

for the backward and

 xc −=ϕ for xc ≥ , (4)

 1minmax +−= GrafxGrafxϕ for cx > , (5)

for the forward check. Grafxmax is the maximum and
Grafxmin is the minimum of x-axis. Maximum and
minimum of x-axis are date and time values, that are
optionally set by user. For instance, the minimum
can be the beginning and the maximum can be the
end of a calendar year. The maximal ϕ is greater
than the x size of the graph that is always greater
than the absolute distance of c-x.
To check the y coordinate, we will use relations:

 0=ϕ for ych −> (6)

and

1=ϕ for ych −< , (7)

where h is the constant height of gantt description.
Activation function for y coordinate is consequently
included only in the backward check. It is because
the forward check is used to find the first gantt,
which does not collide with the last displayed
description on the same y line. If there is no such
gantt, the first gantt on the nearest subsequent y line
will be used.
The idea of relation (1) was applied in [2]. If we
want to take into account the neuron biases, we can
simply add to our activation function

 Θ+= ϕ*y (8)

where Θ stands for the bias. The amendment in (8)
merely means that the result of activation function
will be ignored (neuron will stay in a passive state)
in case that the bias is not set to a predefined value.
The next difference of the RBF 2 is the presence of
unidirectional bind between two neighbouring
neurons. It means, that the neuron memorizes the
c center [x,y] of the previous neuron with less

position (not vice versa). This improvement is used
in the training of the neural output layer.
Neurons of the hidden layer are implemented by a
memory table (similar to database one, but stores all
data in the memory, not physically on the hard
drive) containing the index (sequence number) of
neurons, their c [x,y] position, the bias flag, the
position of a previous neuron and its bias. Each
neuron defines directly the position of a gantt that is
also the first point of description.
It is necessary to train the neural network to set the
weights of a hidden layer.

2.3. The output layer

We solve a classification problem that is why the
output layer has task to choose the appropriate
neuron from the hidden layer. The neuron is chosen
to reflect the criteria of the forward or backward
check.
In the output layer, there is only single neuron to
which all other neurons from the hidden layer are
connected.
The output layer function is following:

 (9)

where *y is output of the hidden layer, iw is weight

and y is the network output. The f function assigns
the distance between the c center and an arbitrary
x input to the value of c , which currently defines
the position of gantt. The RBF 2 network returns
value ofc , which is the first (left) point of gantt
description.
Setting weights of the output layer relates to the
training process.

2.4. Training of the RBF 2 network

The training of the RBF 2 can be categorized in two
parts – training of the hidden and the output layer.
Training of the hidden layer can be realized the way
a pattern (gantt) is chosen from the set and is defined
directly as a prototype. Its position describes exactly
the c center of the neuron. This simple method
provides the fastest way of training. Another
advantage of this method consists in reflecting the
data position within the input space. The hidden
layer is trained backwardly according to the
formulas (2), (3), (6) and (7) and forwardly
according to the (4) – (7). The training process is
executed during the neural network creation when
the input data are disposed. The RBF 2 is forced to
be trained again whenever the mutual position of








= ∑
=

n

i
ii ywfy

1

*

Nedbalek Jakub
New type of neural networks for graph points rendering

 184

gantts in the graph is actualized (i.e. operator chose
another item in the tree, etc.)
When we train the output layer, we need to set the
weight according to the hidden layer. If the hidden
layer neuron has the least distance between its
c center and an arbitrary x input, then the weight
from this input will equal one. In all other cases, the
weight will be set to zero. This process of seeking
the minimal distance is activated whenever there is
any need to call for the forward or backward check.
Finding the minimal distance and the appropriate
gantt, defined by the c center position, is optimized
for time. This is enabled by the mentioned
unidirectional connection between neighboring
neurons. Due to that, the output neuron in each cycle
across the memory table is able to “see” two neurons
of hidden layer in one moment.
In the previous variant [2] of RBF 2, we neglect the
network biases. In the present solution, the neuron
bias is taken into account. This practically means
that in the output layer training phase (looking for
the minimal distance between the c center an
arbitrary x input) and only for the backward check,
we skip all neurons which do not have their
description presence flag set – its value equals zero.
The flag is additionally activated (set to nonzero
value) for the neurons that successfully passed their
collision (forward and backward) test and were
defined as appropriate to hold and show the gantt
description. Acquired information about presence of
the description is later used in the backward check
for another gantt in the sequence, when we need to
decide, whether it is possible to display the
description. The reason, why to use biases only in
backward check is that in the forward check (from
our gantt forth), there are no descriptions yet.
Adding the description presence flag as a neuron
bias makes our output layer training phase faster and
gives the user better feedback.

3. Results

We obtained all results from the actions that
user typically performs – selecting tree nodes of
source and operation type (some of them
repeatedly). This is followed by automatic
repainting of the graph surface.

Table 1. contains the results for each of the three
methods. The first one, that is the original method,
implements the forward and backward testing
without a time optimisation, which is provided by
the RBF 2. On contrary to the RBF 2 (a), the (b)
version uses the neuron biases.

Table 1. The results for all methods.

 User action: Origin. method [s] RBF 2 (a) [s] RBF 2 (b) [s]

1. Sources aver. 30,8095 18,5220 9,5889
std.dev. 8,2622 0,1459 2,2745
2. Operations
aver. 27,5607 19,4707 9,1866
std.dev. 5,1690 2,9958 1,9079
3. Operations 2x
aver. 57,4603 42,6339 18,8508
std.dev. 11,5381 8,2758 3,3455
4. Operations 3x
aver. 100,8735 68,2888 28,3871
std.dev. 21,3945 12,2965 7,0934
5. Main node
aver. 31,1623 29,6636 5,3722
std.dev. 7,6225 5,1430 1,2236

The abbreviations in the first column from left
denote: aver.- average, std.dev. – standard deviation;
sources – user clicked on all nodes of the source
type in the tree component; operations – user clicked
on all nodes of the operation type; 2x (3x) – user
clicked on the specific node type two times (three
times).
Numbers in the Table 1. means the time necessary to
compute all possible collisions among the gantt
descriptions summed with the time necessary to
depict the gantts with their descriptions on the graph
surface. Simply expressed, it is the time which the
graph needs to respond on the user action. All
numbers in the second and third column of the Table
2. (see later) have the same meaning.
Making all these comparison tests makes sense only
in case the set of displayed gantt descriptions is the
same for all methods. This assumption was verified
and successfully fulfilled.
Figure 2.shows the benefit of both versions of the
RBF 2 which are compared to the original method
without time optimisation.

0
10
20

30
40
50
60

70
80
90

0 2 4 6
user action [-]

time
save
[%]

RBF 2 (a)

RBF 2 (b)

Figure 2. Time saving for the modifications of RBF
2 (a- no biases, b-with biases) with respect to the

original method (see Table 1.)

SSARS 2010
Summer Safety and Reliability Seminars, June 20-26, 2010, Gdańsk-Sopot, Poland

 185

Figure 2. demonstrates the time saving of computing
time in percentual ratio (y axis) of the RBF 2
method referred to the former (original) method. The
RBF 2 is depicted for both versions (a – no biases, b
– with biases). The x axis includes the number of the
user action (see Table 1., first column from left). As
we can see, the RBF 2 with the neural biases gives
us better results. For instance, if we apply the RBF 2
ver. (b), we can achieve the result in computation of
all possible gantt description collisions with
approximately 70% of time saving with respect to
the original method. The RBF 2 ver. (a) for the same
computation enables typically 30% of time saving.
Finally, let us compare solely RBF 2 modifications.
Figure 3. shows the time saving of computing time
in percentual ratio (y axis) of the RBF 2 with biases
referred to the RBF 2 without biases. The x axis
includes the number of the same user action as in the
Figure 2.

0

10

20

30

40

50

60

70

80

90

0 2 4 6
user action[-]

time
 save
 [%]

Figure 3. Time saving for the RBF 2 with biases

with respect to the architecture without biases (see
Table 1.)

In the Figure 3, we can see, that time saving for the
version with biases is obvious – we can spare from
50% up to 80% of computing time with regard to the
version without biases.

4. Conclusion

The paper demonstrates the new enhancement of the
RBF 2 neural network – based method of displaying
the data in a manufacturing graph. The enhancement
consists in applying the neural biases, which were
omitted in the previous version of the RBF 2 [2].
This method improves the contemporary state of the
RBF 2 architecture, which requires more
computation time to display all gantt descriptions.

The RBF 2 structure itself was derived from the well
known RBF, to optimize our task.
All time speed tests were realized on the Microsoft
virtual computer with 2.2 GHz dual core processor
and 1.5 GB of allocated RAM memory. All
applications that had no reference to the tested
calculations were halted during tests. Each user
action was repeated more times for the later
statistical handling.
The results were measured on the database, which
was obtained from the real manufacturing process.
This activity indirectly ensured that the graph should
contain the high number of gantts. This is required
because the RBF 2 must pass the stress tests in order
to be applied in the practice. In other words, working
with the real data provides us a good picture about
the real conditions. Although we dispose of
convictive results of the RBF 2 behavior, it still
undergoes the stress tests presently.
The only obvious disadvantage of the RBF 2 neural
network is a lack of generality of the output layer
training function. That is caused by the fact that the
RBF 2 neural network was developed for time
optimization of gantt descriptions overlapping. To
make the RBF 2 more universal, the output layer
training should be altered. However, we can
presume that the price for universality will be a
partial loss of the time optimization ability.

5. Acknowledgements

The author of this paper would like to thank for the
financial support on behalf of the research and
development project num. 1M06047 (CQR), which
is sponsored by the Ministry of Education of the
Czech Republic.

References

[1] Gantt, H.L. (1910).Work, Wages and Profit. The
Engineering magazine, New York, 1910.
http://en.wikipedia.org/wiki/Gantt

[2] Nedbálek, J. (2010). The quality of graphical data
display. Proc. ESREL 2009 Conference,
Reliability, Risk & Safety: Theory and
Applications, ISBN 978-0-415-55509-8, Taylor
& Francis Group, pg. 2041-2044.

[3] Chen, S., Cowan, C.F.N. & Grant, P. M. (1991).
Orthogonal Least Squares Learning Algorithm
for Radial Basis Function Networks. IEEE
Transactions on Neural Networks, Vol. 2(2):
302-309.

[4] Yee, P.V. & Haykin, S. (2001). Regularized
Radial Basis Function Networks: Theory and
Applications. John Wiley.

[5] Šnorek, M. (2004). Neuronové sítě a
neuropočítače. ČVUT, Praha.

Nedbalek Jakub
New type of neural networks for graph points rendering

 186

