
SSARS 2010   
Summer Safety and Reliability Seminars, June 20-26, 2010, Gdańsk-Sopot, Poland 

 

 181

1. Introduction 

In the K2® ERP (Enterprise resource planning) 
system, the human operator can see the screen with 
the tree structure and graph. The tree structure 
content includes the items of the production process. 
These items differ in its kind. The superior element 
of the production items is operation, which belongs 
to the specific document called job card. 
The two dimensional graph contains the inferior 
elements of the production item called the source. 
These items have subordinate items, that are called 
the calendars, describe the capacitive availability of 
the source item in the specific time interval. 
Generally, the x-axis depicts the constant time 
interval selected in advance and the y-axis shows the 
sources names, which depends on the topically 
chosen tree item. If we choose the superior operation 
or the job card type item in the tree, the graph must 
show all sources subordinated to the specifically 
chosen operation or job card. 
Each calendar is depicted as a gantt. Gantt is the 
special chart series type; it’s a dash with predefined 
color. For gantt series type, we ignore its y size and 
take into account only length in x. Gantts cannot 
overlap with each other; every single gantt has its 
unique position [1]. 
User can adjust the type of gantt description by 
clicking on the graph menu option. It is allowed to 
have the number and name of the superior job card 

or name of the final product. This gets us to the main 
point of problem. 
 
2. Description 

In the usual practice, user almost always wants to 
have some type of gantt description to be pictured. 
The reason to do this is that the gantts accompanied 
with the text give us better lay out of the planned 
calendars and their assignment to the specified job 
card. Text labeled gantts stop being “anonymous” 
and enable user to have convenient feedback. 
If the number of gantts in a graph is small enough, 
maximally up to 100, there is no problem to develop 
the algorithm of displaying the gantt descriptions 
without overlapping each other. If the number of 
gantts is small enough, we do not have to take into 
account the elapsed computation time, because the 
computation takes negligible amount of time. 
Problems with inadequate long computation time 
occur in the real world usually. If there is around 103 

gantts in the graph, the computation can take up to 
one minute (for the pc, where test took place) in the 
case of badly optimized algorithm. Too long time 
makes the screen “stack” without any logical 
response to the operator. It is necessary to know, that 
the procedure of displaying gantt descriptions is 
called not only if the user choose the tree item, but 
also in the arbitrary operations in the graph itself. 
User operations in the graph comprise zooming, 
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scrolling and other similar actions that urge to 
refresh the position of gantt descriptions because 
these actions also change the position of gantts 
themselves. 
There is also another problem with a large number 
of gantts in the graph. If we have too many gantts in 
the graph, there is a high chance of descriptions 
overlapping. That provides an uneasy survey for the 
user. 
The target is to create the algorithm, which correctly 
assigns the description to the gantt without any 
overlapping of descriptions themselves. In the 
algorithm, there should be also taken into account 
the time necessary to compute the result. This means 
that the algorithm should be written with regard to 
the operator who needs to obtain results as quickly 
as possible. It is also suitable to depict as many non-
overlapping gantt descriptions in the graph as 
possible to give the operator completed information 
about available items. 
The paper is derived from [2] but corrects the 
potential mistakes in the previous solution and 
shows new prospects of the RBF 2 structure. 
Our solution is applied in the Production module of 
the K2® ERP system. With respect to the computer 
language in which the software itself is written, the 
neural network is implemented in Delphi code.  
 
2. The solution proposal 

The main task of our neural network is to classify, 
which gantt belongs to the input point according to 
the criteria of least distance between the point and 
gantt. The point equals to the last point of the gantt 
description to which we need to find either a) the 
nearest non – colliding gantt with higher x 
coordinate (forward direction) or b) the nearest gantt 
description on a lower y coordinate (backward 
direction). Result of the forward check is the gantt 
(with higher x coordinate), which description we 
want to display (the gantt is not covered with 
previously displayed description). The result of the 
backward check is the gantt (with lower y 
coordinate), which description could collide with the 
already displayed description that is obtained by the 
forward check. Whether the description will be 
shown in the graph depends on the result of the 
geometry comparison of border points.  

To tackle the problem of descriptions overlapping, it 
is possible to apply the RBF 2 neural network. Its 
architecture was evolved from the well known RBF 
[3], [4]. See the Figure 1. 

 
 
 

 
 

Figure 1. The RBF 2 neural network. 
 
This network consists of three layers – distributive, 
hidden and output one. 
 
2.1. Distributive layer 

The distributive layer serves to transfer the signal 
from the input to the hidden layer. The ordered pair 
of numbers [xi, yi] (gantt is placed in two 
dimensional graph) is distributed to the i-th neuron. 
If the input vector has two coordinates, the 
distributive layer will have two inputs. 
 
2.2. Hidden layer 

The hidden layer contains the neurons with the 
activation function. The possible activation function 
can be 

 

[5]                                 (1) 
     

            
which describes distance between the c center of a 
neuron and the arbitrary x input [3], [4]. The c  
center denotes to the vector, to which the neuron is 
trained and describes the pattern that is compared 
with an input. Practically, the c center refers to the 
gantt position. 
Relation (1) is possible solution for the hidden layer 
of a standard RBF network. Finally, with respect to 
the time spare, the altered relation (1) was applied. 
The modification consists in the fact, that the square 
can be neglected in the case, if we know when the 
x input is less than c center (we know that because 
the gantts have ascending order according to their 
position). The sum across i is also ignored as we 
take into account only one coordinate (distance is 
counted separately for each coordinate – the 
collision can occur for x and y independently). 
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Our modified network activation function for the x 
axis equals  
 
   cx −=ϕ  for cx ≥ ,                                        (2) 
 
   1minmax +−= GrafxGrafxϕ  for xc > ,     (3)

   
for the backward and  
 
   xc −=ϕ  for xc ≥ ,                              (4)
         
   1minmax +−= GrafxGrafxϕ  for cx > ,          (5)

           

for the forward check. Grafxmax is the maximum and 
Grafxmin  is the minimum of x-axis. Maximum and 
minimum of x-axis are date and time values, that are 
optionally set by user. For instance, the minimum 
can be the beginning and the maximum can be the 
end of a calendar year. The maximal ϕ  is greater 
than the x size of the graph that is always greater 
than the absolute distance of c-x. 
To check the y coordinate, we will use relations: 
 
   0=ϕ  for ych −>                              (6)
        
and 
 

1=ϕ  for ych −< ,                                       (7) 
 
where h is the constant height of gantt description. 
Activation function for y coordinate is consequently 
included only in the backward check. It is because 
the forward check is used to find the first gantt, 
which does not collide with the last displayed 
description on the same y line. If there is no such 
gantt, the first gantt on the nearest subsequent y line 
will be used. 
The idea of relation (1) was applied in [2]. If we 
want to take into account the neuron biases, we can 
simply add to our activation function 
 

   Θ+= ϕ*y                                                   (8) 
 
where Θ stands for the bias. The amendment in (8) 
merely means that the result of activation function 
will be ignored (neuron will stay in a passive state) 
in case that the bias is not set to a predefined value. 
The next difference of the RBF 2 is the presence of 
unidirectional bind between two neighbouring 
neurons. It means, that the neuron memorizes the 
c center [x,y] of the previous neuron with less 

position (not vice versa). This improvement is used 
in the training of the neural output layer. 
Neurons of the hidden layer are implemented by a 
memory table (similar to database one, but stores all 
data in the memory, not physically on the hard 
drive) containing the index (sequence number) of 
neurons, their c  [x,y] position, the bias flag, the 
position of a previous neuron and its bias. Each 
neuron defines directly the position of a gantt that is 
also the first point of description. 
It is necessary to train the neural network to set the 
weights of a hidden layer. 
 
2.3. The output layer 

We solve a classification problem that is why the 
output layer has task to choose the appropriate 
neuron from the hidden layer. The neuron is chosen 
to reflect the criteria of the forward or backward 
check. 
In the output layer, there is only single neuron to 
which all other neurons from the hidden layer are 
connected. 
The output layer function is following: 

 
 
                                      (9) 

 
 
where *y  is output of the hidden layer, iw  is weight 

and y is the network output. The f function assigns 
the distance between the c center and an arbitrary 
x input to the value of c , which currently defines 
the position of gantt. The RBF 2 network returns 
value ofc , which is the first (left) point of gantt 
description. 
Setting weights of the output layer relates to the 
training process. 
 
2.4. Training of the RBF 2 network 

The training of the RBF 2 can be categorized in two 
parts – training of the hidden and the output layer. 
Training of the hidden layer can be realized the way 
a pattern (gantt) is chosen from the set and is defined 
directly as a prototype. Its position describes exactly 
the c center of the neuron. This simple method 
provides the fastest way of training. Another 
advantage of this method consists in reflecting the 
data position within the input space. The hidden 
layer is trained backwardly according to the 
formulas (2), (3), (6) and (7) and forwardly 
according to the (4) – (7). The training process is 
executed during the neural network creation when 
the input data are disposed. The RBF 2 is forced to 
be trained again whenever the mutual position of 
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gantts in the graph is actualized (i.e. operator chose 
another item in the tree, etc.) 
When we train the output layer, we need to set the 
weight according to the hidden layer. If the hidden 
layer neuron has the least distance between its 
c center and an arbitrary x input, then the weight 
from this input will equal one. In all other cases, the 
weight will be set to zero. This process of seeking 
the minimal distance is activated whenever there is 
any need to call for the forward or backward check. 
Finding the minimal distance and the appropriate 
gantt, defined by the c center position, is optimized 
for time. This is enabled by the mentioned 
unidirectional connection between neighboring 
neurons. Due to that, the output neuron in each cycle 
across the memory table is able to “see” two neurons 
of hidden layer in one moment. 
In the previous variant [2] of RBF 2, we neglect the 
network biases. In the present solution, the neuron 
bias is taken into account. This practically means 
that in the output layer training phase (looking for 
the minimal distance between the c center an 
arbitrary x input) and only for the backward check, 
we skip all neurons which do not have their 
description presence flag set – its value equals zero. 
The flag is additionally activated (set to nonzero 
value) for the neurons that successfully passed their 
collision (forward and backward) test and were 
defined as appropriate to hold and show the gantt 
description. Acquired information about presence of 
the description is later used in the backward check 
for another gantt in the sequence, when we need to 
decide, whether it is possible to display the 
description. The reason, why to use biases only in 
backward check is that in the forward check (from 
our gantt forth), there are no descriptions yet.  
Adding the description presence flag as a neuron 
bias makes our output layer training phase faster and 
gives the user better feedback. 
 
3. Results 

We obtained all results from the actions that 
user typically performs – selecting tree nodes of 
source and operation type (some of them 
repeatedly). This is followed by automatic 
repainting of the graph surface.  

Table 1. contains the results for each of the three 
methods. The first one, that is the original method, 
implements the forward and backward testing 
without a time optimisation, which is provided by 
the RBF 2. On contrary to the RBF 2 (a), the (b) 
version uses the neuron biases. 
 
 

Table 1. The results for all methods. 
 

 User action: Origin. method [s] RBF 2 (a) [s] RBF 2 (b) [s] 

1. Sources aver. 30,8095 18,5220 9,5889 
std.dev. 8,2622 0,1459 2,2745 
2. Operations 
aver. 27,5607 19,4707 9,1866 
std.dev. 5,1690 2,9958 1,9079 
3. Operations 2x 
aver. 57,4603 42,6339 18,8508 
std.dev. 11,5381 8,2758 3,3455 
4. Operations 3x 
aver. 100,8735 68,2888 28,3871 
std.dev. 21,3945 12,2965 7,0934 
5. Main node 
aver. 31,1623 29,6636 5,3722 
std.dev. 7,6225 5,1430 1,2236 
 
The abbreviations in the first column from left 
denote: aver.- average, std.dev. – standard deviation; 
sources – user clicked on all nodes of the source 
type in the tree component; operations – user clicked 
on all nodes of the operation type; 2x (3x) – user 
clicked on the specific node type two times (three 
times). 
Numbers in the Table 1. means the time necessary to 
compute all possible collisions among the gantt 
descriptions summed with the time necessary to 
depict the gantts with their descriptions on the graph 
surface. Simply expressed, it is the time which the 
graph needs to respond on the user action. All 
numbers in the second and third column of the Table 
2. (see later) have the same meaning. 
Making all these comparison tests makes sense only 
in case the set of displayed gantt descriptions is the 
same for all methods. This assumption was verified 
and successfully fulfilled.      
Figure 2.shows the benefit of both versions of the 
RBF 2 which are compared to the original method 
without time optimisation. 
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Figure 2. Time saving for the modifications of RBF 
2 (a- no biases, b-with biases) with respect to the 

original method (see Table 1.) 
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Figure 2. demonstrates the time saving of computing 
time in percentual ratio (y axis) of the RBF 2 
method referred to the former (original) method. The 
RBF 2 is depicted for both versions (a – no biases, b 
– with biases). The x axis includes the number of the 
user action (see Table 1., first column from left). As 
we can see, the RBF 2 with the neural biases gives 
us better results. For instance, if we apply the RBF 2 
ver. (b), we can achieve the result in computation of 
all possible gantt description collisions with 
approximately 70% of time saving with respect to 
the original method. The RBF 2 ver. (a) for the same 
computation enables typically 30% of time saving.  
Finally, let us compare solely RBF 2 modifications. 
Figure 3. shows the time saving of computing time 
in percentual ratio (y axis) of the RBF 2 with biases 
referred to the RBF 2 without biases. The x axis 
includes the number of the same user action as in the 
Figure 2. 
 

0

10

20

30

40

50

60

70

80

90

0 2 4 6
user action[-]

time
 save
 [%]

 
Figure 3. Time saving for the RBF 2 with biases 

with respect to the architecture without biases (see 
Table 1.) 

 
In the Figure 3, we can see, that time saving for the 
version with biases is obvious – we can spare from 
50% up to 80% of computing time with regard to the 
version without biases. 
 
4. Conclusion 

The paper demonstrates the new enhancement of the 
RBF 2 neural network – based method of displaying 
the data in a manufacturing graph. The enhancement 
consists in applying the neural biases, which were 
omitted in the previous version of the RBF 2 [2]. 
This method improves the contemporary state of the 
RBF 2 architecture, which requires more 
computation time to display all gantt descriptions. 

The RBF 2 structure itself was derived from the well 
known RBF, to optimize our task.  
All time speed tests were realized on the Microsoft 
virtual computer with 2.2 GHz dual core processor 
and 1.5 GB of allocated RAM memory. All 
applications that had no reference to the tested 
calculations were halted during tests. Each user 
action was repeated more times for the later 
statistical handling. 
The results were measured on the database, which 
was obtained from the real manufacturing process. 
This activity indirectly ensured that the graph should 
contain the high number of gantts. This is required 
because the RBF 2 must pass the stress tests in order 
to be applied in the practice. In other words, working 
with the real data provides us a good picture about 
the real conditions. Although we dispose of 
convictive results of the RBF 2 behavior, it still 
undergoes the stress tests presently. 
The only obvious disadvantage of the RBF 2 neural 
network is a lack of generality of the output layer 
training function. That is caused by the fact that the 
RBF 2 neural network was developed for time 
optimization of gantt descriptions overlapping. To 
make the RBF 2 more universal, the output layer 
training should be altered. However, we can 
presume that the price for universality will be a 
partial loss of the time optimization ability.  
 
5. Acknowledgements 

The author of this paper would like to thank for the 
financial support on behalf of the research and 
development project num. 1M06047 (CQR), which 
is sponsored by the Ministry of Education of the 
Czech Republic. 
 
References 

[1] Gantt, H.L. (1910).Work, Wages and Profit. The 
Engineering magazine, New York, 1910. 
http://en.wikipedia.org/wiki/Gantt 

[2] Nedbálek, J. (2010). The quality of graphical data 
display. Proc. ESREL 2009 Conference, 
Reliability, Risk & Safety: Theory and 
Applications, ISBN 978-0-415-55509-8, Taylor 
& Francis Group, pg. 2041-2044. 

[3] Chen, S., Cowan, C.F.N. & Grant, P. M. (1991). 
Orthogonal Least Squares Learning Algorithm 
for Radial Basis Function Networks. IEEE 
Transactions on Neural Networks, Vol. 2(2): 
302-309. 

[4] Yee, P.V. & Haykin, S. (2001). Regularized 
Radial Basis Function Networks: Theory and 
Applications. John Wiley. 

[5] Šnorek, M. (2004). Neuronové sítě a 
neuropočítače. ČVUT, Praha. 



Nedbalek Jakub 
New type of neural networks for graph points rendering 

 

 186 

 


