Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Rainfall forecast information is important for the planning and management of water resources and agricultural activities. Turksvygbult rainfall near the Magoebaskloof Dam (South Africa) has never been modelled and forecasted. Hence, the objective of this study was to forecast its monthly rainfall using the SARIMA model. GReTL and automatic XLSTAT software were used for forecasting. The trend of the long-term rainfall time series (TS) was tested by Mann-Kendall and its stationarity was proved by various unit root tests. The TS data from Oct 1976 to Sept 2015 were used for model training and the remaining data (Oct 2015 to Sept 2018) for validation. Then, all TS (Oct 1976 to Sept 2018) were used for out of sample forecasting. Several SARIMA models were identified using correlograms that were derived from seasonally differentiated TS. Model parameters were derived by the maximum likelihood method. Residual correlogram and Ljung–Box Q tests were used to check the forecast accuracy. Based on minimum Akaike information criteria (AI) value of 5642.69, SARIMA (2, 0, 3) (3, 1, 3)12 model was developed using GReTL as the best of all models. SARIMA (1, 0, 1) (3, 1, 3)12, with minimum AI value of 5647.79, was the second-best model among GReTl models. This second model was also the first best automatically selected model by XLSTAT. In conclusion, these two best models can be used by managers for rainfall forecasting and management of water resources and agriculture, and thereby it can contribute to economic growth in the study area. Hence, the developed SARIMA forecasting procedure can be used for forecasting of rainfall and other time series in different areas.
Wydawca
Czasopismo
Rocznik
Tom
Strony
100--107
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
- University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
autor
- University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
Bibliografia
- AKAIKE H. 1974. A new look at the statistical model identification. IEEE transactions on automatic control. Vol. 19(6) p. 716–723. DOI 10.1109/TAC.1974.1100705.
- ANOKYE R., ACHEAMPONG E., OWUSU I., OBENG E.I. 2018. Time series analysis of malaria in Kumasi: Using ARIMA models to forecast future incidence. Cogent Social Sciences. Vol. 4(1) p. 1461544. DOI 10.1080/23311886.2018.1461544.
- ARUMUGAM P., SARANYA R. 2018. Outlier detection and missing value in seasonal ARIMA model using rainfall data. Materials Today. Proceedings. Vol. 5(1) p. 1791-1799. DOI 10.1016/j.matpr.2017.11.277.
- BAIOCCHI G., DISTASO W. 2003. GRETL: Econometric software for the GNU generation. Journal of Applied Econometrics. Vol. 18(1) p. 105–110. DOI 10.1002/jae.704.
- BOX G.E., JENKINS G.M. 1976. Time series analysis: forecasting and control. Michigan. Holden-Day. ISBN 0816211043 pp. 575.
- BOX G.E., JENKINS G.M., REINSEL G.C., LJUNG G.M. 2015. Time series analysis: forecasting and control. Hoboken. John Wiley & Sons. ISBN 978-1-118-67502-1 pp. 712.
- BROCKWELL P.J., DAVIS R.A., CALDER M.V. 2002. Introduction to time series and forecasting. 2nd ed. New York. Springer. ISBN 0-387-95351-5 pp. 434.
- CHEN P., NIU A., LIU D., JIANG W., MA B. 2018. Time series forecasting of temperatures using SARIMA: An example from Nanjing. In: IOP Conference Series: Materials Science and Engineering. Vol. 394(5), 052024. DOI 10.1088/1757-899X/394/5/052024.
- CRYER J.D., CHAN K.S. 2008. Time series analysis: With applications in R. 1st ed. New York. Springer. ISBN 978-0-387-75958-6 pp. 491.
- DICKEY D.A., FULLER W.A. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association. Vol. 74(366) p. 427–431. DOI 10.2307/2286348.
- HAMILTON J.D. 1994. Time series analysis Princeton. Princeton University Press. ISBN 9780691042893 pp. 816.
- HANNAN E.J., QUINN B.G. 1979. The determination of the order of an autoregression. Journal of the Royal Statistical Society. Series B (Methodological). Vol. 41 p. 190-195. DOI 10.1111/j.2517-6161.1979.tb01072.x.
- HAUMANN K. 2006. Appendix 2 system operation report Letaba Catchment Reserve determination – Operation report. DWAF. South Africa. Available at: http://www.dwa.gov.za/rdm/documents/Reouce%20Units%20Report_Appendix%202.pdf
- HIPEL K.W., MC LEOD A.I., LENNOX W.C. 1977. Advances in Box-Jenkins modeling: 1. Model construction. Water Resources Research. Vol. 13(3) p. 567–572. DOI 10.1029/WR013i003p00567.
- KENDALL M. 1975. Multivariate analysis. London. Charles Griffin & Co. Ltd. ISBN 0852642342 pp. 210.
- KING J., PIENAAR H. (eds.) 2011. Sustainable use of South Africa’s Island waters: A situation assessment of resource directed measures 12 years after the 1998 National Water Act. Water Research Commission Report. No. TT 491/11. ISBN 978-1-4312-0129-7 pp. 245.
- KWIATKOWSKI D., PHILLIPS P.C., SCHMIDT P., SHIN Y. 1992. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics. Vol. 54(1–3) p. 159 178. DOI 10.1016/0304-4076(92)90104-Y.
- LJUNG G.M., BOX G.E. 1978. On a measure of lack of fit in time series models. Biometrika. Vol. 65(2) p. 297–303. DOI 10.1093/biomet/65.2.297.
- MURAT M., MALINOWSKA I., GOS M., KRZYSZCZAK J. 2018. Forecasting daily meteorological time series using ARIMA and regression models. International Agrophysics. Vol. 32(2) p. 253–264. DOI 10.1515/intag-2017-0007.
- NYATUAME M., AGODZO S.K. 2018. Stochastic ARIMA model for annual rainfall and maximum temperature forecasting over Tordzie watershed in Ghana. Journal of Water and Land Development. No. 37 p. 127–140. DOI 10.2478/jwld-2018-0032.
- PAPALASKARIS T., PANAGIOTIDIS T., PANTRAKIS A. 2016. Stochastic monthly rainfall time series analysis, modeling and forecasting in Kavala City, Greece, North-Eastern Mediterranean Basin. Procedia Engineering. Vol. 162 p. 254–263. DOI 10.1016/j.proeng.2016.11.054.
- PHILLIPS P.C., PERRON P. 1988. Testing for a unit root in time series regression. Biometrika. Vol. 75(2) p. 335–346. DOI 10.1093/biomet/75.2.335.
- SALAS J.D., DELLEUR J.R., YEVJEVICH V., LANE W.L. 1980. Applied modeling of hydrologic time series. Littleton. Water Resor. Pub. ISBN 0918334373 pp. 484.
- SCHWARZ G. 1978. Estimating the dimension of a model. The annals of statistics. Vol. 6(2) p. 461–464. DOI 10.1214/aos/1176344136.
- SHAFAEI M., ADAMOWSKI J., FAKHERI-FARD A., DINPASHOH Y., ADAMOWSKI K. 2016. A wavelet-SARIMA-ANN hybrid model for precipitation forecasting. Journal of Water and Land Development. No. 28 p. 27–36. DOI 10.1515/jwld-2016-0003.
- SINGH M., SINGH R., SHINDE V. 2011. Application of software packa ges for monthly stream flow forecasting of Kangsabati River in India. International Journal of Computer Applications. Vol. 20(3) p. 7–14. DOI 10.5120/2416-3231.
- TADESSE K.B., DINKA M.O. 2017. Application of SARIMA model to forecasting monthly flows in Waterval River, South Africa. Journal of Water and Land Development. No. 35 p. 229–236. DOI 10.1515/jwld-2017-0088.
- TADESSE K.B., DINKA M.O. ALAMIREW T., MOGES S.A. 2017. Evaluation of sseasonal autoregressive integrated moving average models for river flow forecasting. American Journal of Environmental Sciences. Vol. 13(5) p. 378-387. DOI 10.3844/ajessp.2017.378.387.
- TAKELE R., GEBRETSIDIK S. 2015. Prediction of long-term pattern and its extreme event frequency of rainfall in Dire Dawa Region, Eastern Ethiopia. Journal of Climatology & Weather Forecasting. Vol. 3 (1) p. 1–15. DOI 10.4172/2332-2594.1000130.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a1f71fe-2923-4fcd-bea0-8cfe2d2931fa