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Abstract

The transportation problem is a special type of linear programming problems, which
involve linear cost functions and constraints. In this research, two aspects of the
transportation problem are discussed. Firstly, this paper proposes the weighted arith-
metic mean algorithm to find an initial basic feasible solution. Secondly, it explicates
the application of weights to achieve optimality. The weights form additional param-
eters that appear in the matrix defining the cost. Furthermore, after studying and
analyzing the algorithms, a special type of degenerate transportation problem is
considered and a solution that is optimal or near to optimal is found.
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1. Introduction
Transportation Problem is a special kind of Linear Programming Prob-

lem (LPP) (cf. Hadley (1962)). The main objective is to transport goods
from many sources to various destinations. The goal is to find an appropri-
ate transportation arrangement for which the cost of transportation is min-
imized. The transportation problem may be solved by the simplex method
(cf. Dantzig (1951)), but this method is not suitable for large-scale problems.
The stepping stone method was developed for efficiency reasons due to its
special model by Charnes and Cooper in 1954.

The original models of transportation were established in 1941, when the
study by F.L. Hitchcock was published (v. [4]). This presentation is considered
as the first major contribution to solving transportation problems. In 1947,
the study by Koopmans (1949)1 was presented. The development of the trans-
portation models involving many production sources and several destinations
mainly relies on these two contributions.

1Optimum use of the transport system
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To solve the transportation problems, the stepping stone method is very
frequently used (cf. Quddoos et al. (2012), Sudhakar et al. (2012)). It is a
method by which all non-basic cells that are empty and are evaluated move
from an initial feasible solution to an optimal solution. To evaluate an empty
cell, the method adopts a path tracing approach. The modification distribu-
tion method (MODI) is another way to evaluate empty cells. The stepping
stone method is similar to the MODI method. Degeneracy, which appears
when there are few basic cells in a feasible solution, is a serious problem of
the stepping stone method. To deal with the problem of degeneracy one may
follow the work of Shafaat and Goyal (1988).

Although degeneracy in the simplex method does not cause major dif-
ficulties, it may lead to computational problems in transportation problem
(cf. Sharma (2009), Taha (1992)). In such a case it is not possible to make
closed paths (loops) for every vacant cell in the stepping-stone method, so it
is not possible to take into account all vacant cells. If the MODI method is
used, it is not possible to find all the needed variables, since the number of
assigned cells is not sufficient. Therefore, a degenerate transportation prob-
lem must be identified and appropriate steps must be taken to help avoid
computing problems. Degeneracy can occur in the initial solution or during
some subsequent iteration.

In this paper we develop a method to obtain the optimal solution with
weights. We find an initial basic feasible solution with the Weighted Arith-
metic Mean and optimal solution or near to the optimal solution to the trans-
portation problem. Optimality is tested by using the stepping stone concept
via the sum of the weights assigned in the transportation cost matrix and de-
termining the net difference in the weights of empty cells. This method utilizes
the newly developed weighted arithmetic mean employing the weights other
than used in previously established methods like Arithmetic Mean, Geomet-
ric Mean and the Harmonic Mean (cf. Sathyavathy and Shalini (2019)). The
new algorithm discussed here gives the idea of optimality. We also provide a
numerical example that illustrates the new algorithm.

2. Definition of Transportation Problem
Let us consider the transportation problem with m sources Si (with sup-

plies ai, i = 1, 2, 3, . . . ,m) and n destinations Dj (with demands bj , j =
1, 2, 3, . . . , n).
Let cij denotes the cost of transporting the unit load from the source Si to
the destination Dj .
Let xij denotes the number of load units moved from Si to Dj .
Mathematically the problem can be stated as:
Minimize Z =

∑m
i=1

∑n
j=1 cijxij

subject to constraints:∑n
j=1 xij = ai for i = 1, 2, 3, . . . ,m (supply constraints)∑m
i=1 xij = bj for j = 1, 2, 3, . . . , n (demand constrains)
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and xij ⩾ 0 for all i and j.
The above details can be given in the form of a matrix shown in Table 1:
Balanced Transportation Problem

Table 1: Balanced transportation problem
Source Destination Supply

D1 D2 .... Dn

S1
(x11)

c11

(x12)
c12

....
(x1n)

c1n
a1

S2
(x21)

c21

(x22)
c22

....
(x2n)

c2n
a2

.... .... .... .... .... ....

Sm
(xm1)

cm1

(xm2)
cm2

....
(xmn)

cmn
am

Demand b1 b2 . . . bn
∑m

i=1 ai =∑n
j=1 bj

A problem that satisfies the additional condition stated in Table 1 i.e.,∑m
i=1 ai =

∑n
j=1 bj is called a balanced (standard) transportation problem.

Most techniques developed for solving transportation problems work only
for balanced problems. It is required that every non-standard transporta-
tion problem, in which supplies and demands are not balanced (

∑m
i=1 ai ̸=∑n

j=1 bj), be converted to a standard transportation problem before it can be
addressed. The non-standard transportation problem can be converted into a
standard transportation problem by using a dummy source or destination.

2.1. Basic terms of the Transportation Problem. A few terms re-
lated to the transportation problem are described below.

Feasible Solution: A set of non-negative individual allocations (xij ≥ 0)
that satisfies the demand and supply constraints (rim conditions).

Basic Feasible Solution: A feasible solution that consists of no more than
m+n− 1 non-negative allocations (where m is the number of rows and
n is the number of columns).

Initial Basic Feasible Solution (IBFS): An initial basic solution that sat-
isfies the conditions:

1) The solution is feasible, i.e. all the supply and demand constraints
(also known as rim conditions) are satisfied.

2) The number of non-negative allocations is equal to m+n−1 (where
m is the number of rows and n is the number of columns).

Optimal Solution: An optimal solution is a feasible solution that optimizes
(minimizes) the total transportation cost.
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Balanced Transportation Problem: A transportation problem for which
the total supply from all sources equals the total demand in the desti-
nations. i.e.

∑m
i=1 ai =

∑n
j=1 bj .

Unbalanced Transportation Problem: A transportation problem for which
the total supply from all sources does not equal the total demand in the
destinations. i.e.

∑m
i=1 ai ̸=

∑n
j=1 bj .

Non-degenerate Basic Feasible Solution: A basic feasible solution for
which the number of non-negative allocations is strictly m+ n− 1 (i.e.
equal to the number of independent constraint equations), and these
allocations are in independent positions.

Degenerate Basic Feasible Solution: A basic feasible solution in which
the total number of non-negative allocations is less than m+ n− 1.
This type of solution is not easy to change because at this point it is
difficult to draw a closed loop for each occupied cell. Degeneracy must
also be removed for the solution achieved to be optimal. Thus, in two
different stages, degeneracy occurs.

1) At the stage of Initial Basic Feasible Solution, where the number
of occupied cells is less than m+ n− 1.

2) When moving towards an optimal solution at any point; two or
more occupied cells can simultaneously become unoccupied.

Optimality Test: The optimality test will be performed if the number of
allocation cells in an initial basic feasible solution is equal to m+n− 1.
Otherwise, the optimality test cannot be performed.

In the optimality test we check whether the total transportation cost is de-
creased if we put an allocation in a vacant cell.

3. Weights in Transportation Problem. Now let wij be weights as-
signed to the costs cij for each i = 1, 2, 3, . . . ,m and j = 1, 2, 3, . . . , n. We
assign the weights to the costs cij from the highest to lowest transportation
cost for each row and each column. That is, we assign the weight 1 to the
highest (maximum) cost, subsequent weights to the subsequent costs, and n
to the lowest cost for each row. Similarly, we assign the weight 1 to the highest
(maximum) cost, subsequent weights to the subsequent costs, and m to the
lowest cost for each column. We note that weights can be possibly assigned
chronologically or randomly in case of tied costs.

We denote the weights assigned to the cost cij by wr
ij considering the cell

in a row and wc
ij considering it in a column.

We define the sum of weights Sij=wr
ij+wc

ij for each cell in the transporta-
tion cost matrix. We will consider it for the optimality test. We will define
later the net difference in the weights dwij for each unoccupied cell using the
sum of weights Sij .
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3.1. Weighted Arithmetic Mean (WAM). The Weighted Arithmetic
Mean is derived from the formula

xw =
w1x1 + w2x2 + w3x3 + . . .+ wnxn

w1 + w2 + w3 + . . .+ wn
=

∑n
i=1wixi∑n
i=1wi

The Weighted Arithmetic Mean is an average determined by giving different
weights to the set of observations in the data. The Weighted Arithmetic Mean
plays a significant role in the systems of data analysis, weighted differential
and integral calculus. We apply this arithmetic average in the transportation
problem in this paper.

4. Algorithm. This approach provides a procedure for finding an initial
basic feasible solution using the Weighted Arithmetic Mean

Step 1: Determine whether the transportation problem is balanced or not.
If it is not balanced, then add a dummy row or column to make the
problem balanced. Then proceed to the next step.

Step 2: Using weights in the transportation matrix, find the weighted arith-
metic mean for each row and column.

Step 3: Select the highest values for each row and each column from Step 2
and allot the minimum supply or demand of the lowest cost value for
the corresponding row or column.

Step 4: Repeat Steps 2 and 3 until the demands are met and all the supplies
are exhausted.

Step 5: Total cost is calculated as the sum of the products of the cost and
the corresponding allocated value of supply or demand.

Step 6: If the degeneracy is found, i.e. the number of allocations is less than
m + n − 1, to resolve degeneracy at the initial basic feasible solution
we proceed by allocating a small quantity close to zero to one or more
(if needed) unoccupied cells to get m + n − 1 occupied cells. The cell
containing this extremely small quantity is considered to be an occupied
cell and is denoted by ∆. This small quantity will not affect the total
cost and supply and demand values. It is better to allocate ∆ to unoc-
cupied cells that have the lowest transportation cost in a minimization
problem. On the other hand, in a maximization problem, the cell with
the maximum transportation cost should be allocated. The quantity of
∆ is considered so small that when transferred to an occupied cell it
does not change the quantity of allocation.

4.1. The Optimality Test. To verify the optimality, we follow the
following procedure:

Step 1:
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1. Start with an initial basic feasible solution by the Weighted Arith-
metic Mean containing m+ n− 1 allocations in independent posi-
tions.

2. If the initial basic feasible solution is found by any method other
than WAM, then we must assign the weights to the transportation
cost matrix as discussed earlier in this paper.

Step 2:

1. Trace a closed path (or loop) starting from an unoccupied cell
through at least three occupied cells, and then back to the selected
unoccupied cell.

2. Assign plus (+) and minus (-) signs alternatively to the sums Sij

for each corner cell of the closed path just being traced, starting
with plus (+) sign for the unoccupied cell.

3. Compute the net difference dwij of the weights for each unoccupied
cell by adding the sums of weights Sij from the cells having plus
sign and subtracting the sums of weights Sij from the cells having
minus sign along with the closed path traced in Step 2.

4. Repeat this process for all other unoccupied cells in the matrix.

Step 3:

1. The optimal solution is achieved when the net difference in the
weights dwij ≤ 0 for the unoccupied cells.

2. Otherwise, select the unoccupied cell with the highest positive net
difference (dwij > 0).

Step: 4 Repeat Step 2 and Step 3 until the optimal solution is obtained.
Step: 5 The total transportation cost is calculated as the sum of the product

of value and corresponding allotted cost of supply or demand, i.e. total
cost=

∑m
i=1

∑n
j=1 cijxij .

This optimality test, using the sum of weights given for each cell, produces
the optimal solution or a solution close to the optimal solution. In our opti-
mality test, we use the net difference in the weights dwij . The net difference in
the weights dwij is nothing but the resultant weight for each unoccupied cell.
If the resultant weight is positive for an unoccupied cell, it will contribute to
the optimal cost of the transportation matrix.

5. Numerical example. A steel company has three open hearth fur-
naces and five rolling mills. The transportation costs (rupees per quintal) for
shipping steel from furnaces to rolling mills are given in Table 2. What is the
optimal shipping schedule?
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Table 2: Formulation of the problem.
M1 M2 M3 M4 M5 Supply

F1 4 2 3 2 6 8
F2 5 4 5 2 1 12
F3 6 5 4 7 7 14

Demand 4 4 6 8 8

5.1. Solution. The given problem is an unbalanced transportation prob-
lem. Accordingly, the initial basic feasible solution from WAM is established
after making the balanced transportation problem by adding dummy column
considered as M6.

Table 3: Stage 1 IBFS

Number of occupied cells: 7 ̸= m+ n− 1 = 3 + 6− 1 = 8.
Total transportation cost of WAM: 4·4+3·4+4·4+1·8+4·2+7·8+0·4 = 116.

We obtained the IBFS that has the number of occupied cells less than
m+n− 1 = 3+6− 1 = 8. Consequently, the IBFS is Degenerate. To remove
the degeneracy, allocate ∆ at the unoccupied cells that have minimum trans-
portation cost among the unoccupied cells. So, here we choose (F2,M4) cell
of the cost matrix because we consider a minimization problem (see Table 4).

Table 4: Stage 2 IBFS
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Now, with the optimality test, we have the optimal solution as shown in
Table 5:

Table 5: Stage 3 Optimality

dw13 = −2, dw15 = −5, dw16 = −3, dw21 = −2, dw22 = −3, dw23 = −5,
dw26 = −2, dw32 = −1, dw34 = −4, dw35 = −4

So, all dwij ≤ 0 and optimality is achieved.
Total Minimum Cost = 2 · 4 + 2 · 4 + 2 · 4 + 1 · 8 + 6 · 4 + 4 · 6 + 0 · 4 = 80.

6. Conclusion. It was shown in the paper that there are two important
methods for solving transportation problems: finding an initial basic feasible
solution (IBFS) and checking optimality. It is possible to solve standard and
non-standard, non-degenerate and degenerate transportation problems with
the proposed procedure. The aim of this paper was to address degeneracy
while solving a well-defined problem. We strived to derive the optimal so-
lution to the transportation problem through the optimality test. The main
advantage of this procedure is that the external parameters of the weights
used for the costs in each iteration provide the optimal solution or near-
optimal solution for a Degenerate Transportation Problem in fewer steps and
shorter time to effectively solve the problem. The future extent of this algo-
rithm is that the decision-maker correlates this algorithm with certain cred-
ible changes with fewer steps. Additionally, this algorithm achieves the most
effective result for real-world problems.
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Ważone średnie arytmetyczne wag w optymalnych rozwiązaniach
zdegenerowanych problemów transportowych.

Mona Gothi i Dr. Reena G. Patel

Streszczenie Zagadnienie transportowe to specjalne zadanie programowania linio-
wego, dla którego zostały opracowane dedykowane algorytmy. W tej pracy zapro-
ponowano dwa podejścia do zagadnienia transportowego. W pierwszym podejściu
podajemy algorytm średniej ważonej. Jest on przeznaczony dla początkowego pod-
stawowego rozwiązania dopuszczalnego. W drugim podejściu wyjaśniamy zastosowa-
nie wag do osiągnięcia optymalności. Wagi, to dodatkowe parametry, które są ujęte
w macierzy kosztu. Po przestudiowaniu i przeanalizowaniu algorytmu analizujemy
specjalny przypadek zdegenerowany, dla którego uzyskujemy rozwiązanie optymalne
lub bliskie optymalnemu.

Klasyfikacja tematyczna AMS (2010): 62J05; 92D20.

Słowa kluczowe: agadnienie transportowe; średnia arytmetyczna ważona (WAM);
początkowe podstawowe możliwe rozwiązanie (IBFS), degeneracja, optymalność, róż-
nica netto w wagach dla optymalności .
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