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Abstract
Wave phenomena in ogémensional media caus by moving forcesare discussed with spec
emphasis on application to the interaction bein pantographand traction. Stationary solutior
are examinedn the case of unbounded domains along with bounddiiects in the case of fin
domains.The influence of the tralling speed on stability is examineld. more complex structure
numerical methods are used to find maximal defies

INTRODUCTION

The energy supply to an electrical locomotive or EMU trains is depende
on the cotact between pantographs and tion wire [1,10-12].Since the train, in gener:
is moving with a certain speed, the force is gaimggadynamic deflections in the tract [5-
7]. These are propagatiadpng the wire being reflected at supports and boundaries, cal

nontrivial interations with the pantograg
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Fig. 1. Segment of (simplified) tractit

50

distance [m]

In order to minimize fluctuations, a messenger vsrgpanned above the actual con
wire, which is periodically suspended by droppemsidimg it at the desired leve
Consequetty, there will be waves running in both wirewhich are coupled at the positic
of the dropers. A typical layouts presented in Fig. 1.
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Before we will start numerical studies on ttwo-wire case, let us collect some is
about wave propagation due moving forces in a single wire, modeled as a si

1. ANALYTICAL SOLUTIONS

We start our investigation from the classical cafséne wave equaticas in [2,5,]
(Su(x,t)"+Pu(x,t))"+pou(x,t) = f (1) 1)

Here we denote b§ the bending stiffness of the medium, p the mass density per unit
length and by the compressing forc Time is denoted by position along the wire kx, the
corresponding partial derivatives are indicated @ysuperposed dot or an apostrog
correspondingly.The external forcef may be modeled as a Dirac distribution, which
concentragd in each moment at the pointVt, whereV is the travelling speed of tt
pantographln a typical traction wireSmay be well neglected in a first approximation, P
is negative Technically, the tesion is maintained by concrete weights of about tmeirical
tons of mass. This leads in the case of very flexiredia to the simgfied equaton

U(x,t) —cu(x,t)"'= f(x,t)/ p (2)

We introducedt? for the ratio of tensioP to mass densityNotice that often, inste: of P, in
the literature on beams there appears the paraT (for tension). We prefer to reserT for
the duration of transient processes, and hencéhegearameter nanP as typically in paper
on columns.

1.1. Unbounded case

Solutions to this hyperbolic partial differentialuefion of second order can be obtaine
terms of the initial deflections and integrals owgtial speed and external for

o
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amplitude
o
o
R

-50 0 50
distance

Fig. 2. Classical wave solution

Assuming constant coefficients and zero forces,saytionof (2) on the whole real ax
xORhas the form

u(x,t) = @(x +ct) +¢(x—ct) 3)
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An initial concentrated shift around the originitspinto two waves, one running left, the
other right, with equal but opposite speeds, seg Ei The functions? and ¥ can be
identified from initial conditionsu(,0) on the deflection and on the initial lateral speed
v(,0)=u(0).

In the relevant case of a nontrivial inhomogengitye., when the disturbance is caused by
an external force, the solutiarat a given position depends at timeon the force terms at all
positions from whiclx can be reached at wave speed a time span smaller or equal than
In fact, one obtains

U, (X —ct) +u,(x +ct) N ij-mtv

1 ¢t px+c(t+r)
5 o o OdE ] (& ndddr 4)

x-c(t-1)

u(x,t) =

X—ct
whereup andvy denote initial conditions, defined for all posig

In the case of an initially undisturbed wire thestfitwo contributions vanish, the solution
reduces to the double integral of the source t&men the small size of the contact area
between wire and pantograph, it is sensitive torass

f(xt) = F(t)AV1) (5)

with ¢ denoting Dirac’s distribution anid the magnitude of the vertical force at timé his
renders the inner integration trivial — it yieldsply F(7) or zero. It remains to determine

the actual interval of the time integration, whére inner integral is nonzero, i.e., when the
travelling force crosses the influence region efwWave equation.

Typically, one assumes a harmonic force functiothefformF(t)=F +F 4 Sin(2t). In that
case, the integration can be carried out analjgicahd we obtain a closed formula for the
solution.

Let us study the special case\6fc. In order to calculate the amplitude at a givem{po
(x,t) in the upper half-plane on the trajectory of thecé, i.e, forx=Vt , we evaluate (4) by
inserting the special choice of (5).

u(x,t) = % j; F(7)dr = O5tF, +2F—;2 (cos@t) -1) (6)

Obviously, with running time the deflection at the point of contact grows unlutadiy,
proportionally to time and mean contact force. Haene is true for all travelling speeds,
unless a bedding or some supports are added tzthp.

The case/=c is called critical, because for that choice thawdgive of the solution under
the force becomes infinite, see Figs. 3 and 4.
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Fig. 3. Solution ont=0 ... 0.5s for travelling speeV equal 0.75 times the wave sp ¢

In Figs. 3 and 4, we assuma tension of 2kN, and a mass per length1.33 kg/m, see
[1]. This gives a wave speed of around 120The lateral force wasonstant equal t200N.
The travelling speed in Fig. 3 32Gkm/h. The unrealistic large values of the deflettave,
obviously a consequence of the lack of suts and,most of all, the lack of couplil. For
realistic values of the static stiffness as functtad x cf. [12]. It has to be stressed 1 the
model of a constant or periodic force, while sugal rail-wheel contact, is unrealistic for
pantograph, [3-6]. Latesn we will introduce coupling, e.g. reduce the eadd the force in i
nonlinear way in dependence on the wire deflec

2,

1.5F

deflection [m]

-05 | | | | | ]
-150 -100 -50 0 50 100 150
position [m]

Fig. 4. Solutions at=0.5s for travelling speeV equal to 0, 0.5, 1, 1.5 and 2 times the wave <c

Notice that for theoriginal partial differential equation (1), whick of fourth order &d
non-hyperbolic, but degenerated parabolic, the disons8 more complex. Solutis are
found, again, in the form of running waves as i @wever there is no cstant wave speed.
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Superpositions o$inusoidal waves, running at a speed dependindn@n frequencie, have
to be considered, see [4#,%ater we will discuss the magnitude of the drspen effects by
numerical experiments.

1.2. Bounded case

In the case that the position variax is restricted to a finite intervax[-L/2,L/2],

formula (4) is not applicable. Instead, it is assdrthat the solution is a sum of product te
of the form

u(x,t) =2 a(h (1) (7)

Now, substituting (7) intothe homogeneous version of (2)ne obtains that tr
amplitudesa have to be sine or cosine functions. Further, thaye to obey bounda
conditions. In the Dirichlet case, this implig (x) = cos(7z/L) . For the time dependenb a

second order differential equation is obta, which together with the initial conditiol
allows to define the solution to the initial boungaalue problem in a unique way as
infinite trigonometric series.

Most essentially, asa consequence of the boundary condit we can observe
refledions from the boundaries. Under certain circumstan superpositions of runni
waves may take the special form of a standing v

m
o
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deflection [m]

deflection [m]
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position [m]

position [m]

Fig. 5. Solutions for regular rigid supports h 6m

As we can see from Fig. 5, periodic supports bkbekgrowth of the amplitude under 1
force. There are only oscillations in the wake, #mel maximal deviation drops to seve
certimeters. However, this setup is still far fromligtzc.

o
o

height [m]

o
»

20 -10 0 10 20
distance [m]

Fig. 6. Geometry of one cell of tl studied system
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In a more complex structure as e.g. in Fig. 6, Whscone cell of the sample layout in
Fig. 1, analytical considerations become more andcermnpractical due to the large number
of reflections overlaying each other. Consequentlys preferable to switch to numerical
approximations. In fact, already the form (7) ofaaralytical solution — as an infinite series —
requires eventually a numerical evaluation. Foryveoncentrated source terms, the
convergence of (7) may be less satisfactory thaineat approach by finite elements or by the
method of lines.

2. NUMERICAL SOLUTIONS
2.1. Semi-Discr etization

One of the most straightforward numerical approactee the solution of (2) is the
substitution of the second order partial differatitin by a second order finite difference. An
alternative method was discussed and applied inUg8pally we use a uniform grid with

stepsizeh = AX = X;,, = X, :%, ] =0,...,n-1. We denote by; the deflection at the position

X and byv; the corresponding velocity. Next, the value of $eeond order space derivative
u”(x;) is approximated by the difference betwegand the arithmetic mean between its two
closest neighbors, divided over the square of titesize

uj—l(t) B 2uj (t) + uj+1(t)
h2

u"(x;,t) =

(8)

As for the time variable, in numerical calculatiome restrict ourselves to a finite set of
instantsty throught,, as well. However, we do not treat the time deis in an analogous
way as the space derivative. First of all, equatiohsecond order are converted into systems
of twice as many first order equations, in our cisethe two unknowr(n+1)-dimensional
vector functionsu(t) and v(t). Next, instead of approximating both time derivesi e.g. by

forward differences, the system should be passe@ toigher order algorithm for the
integration of ordinary differential equations, dspri in the non-stiff case or BDF-scheme
in the stiff case, see e.g. [8,9].

deflection [m]

position [m]

Fig. 7. Solutions for wire with (considerable) bendingfsigfss

In Fig. 7 we present a solution, where a finiteueadf the bending stiffne=200kNnf
was taken into account. Technically, this is oledifby applying (8) to itself, so that a forth
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order derivative is calculated frofive nodal values. Obviously, in the result there waves
running much faster, before the front of the hypéddimit case. On a bounded domain w
hard boudary conditions, reflectiorinterfere with the original wave.

time: 0.5
0.03

0.025
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position [m] position [m]
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o
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Fig. 8. Solutions forsupported wire with bending stiffne

Now, we are able to combine the effects of variswgport— periodic or not, mistunin
can be handled easily and nor-vanishing bending stiffness. In Fig. 8 we see fobatthe
fourth order equation (1), however dl the bending stiffness§, waves run ahead of tl
moving force, even when travelling at the hyperbolave speed. As opposed to Fig. 5, i
the wake extends to positions behind the startoigtf the force, from the origin to the le
However, the mall values of the deflection are now due to thel lsupport— which are not
present in a real catenary syst We will come back to this in Sec. 3.

2.2. Modal Analysis

Until now, the studied system is purely elastic, emergy is dissipated by viscous
frictional forces. Consequently, high frequency odmdies are not damped out, so t
solutions to problems with a concentrated and ngp¥mce become quickly very no, see
e.g. [6] Often this noise is reduced by filtering, e.g28tHz Alternatively, we may try to
calculate the solution in a form similar to (7), evé the amplitude functica(x) is replaced
by numercally calculated eigenforms of the elastic systerm, as depicted in Fig. 1 or Fig.
The sum is then cut when the eigenfrequenceeds the level we are intereste(

mode 7 EV = 91.041

0.6
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04r-
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0.2-

deflection [m]

0.1
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0 50 100 150 200 250 300
position [m]

Fig. 9. A symmetric low frequency mode of a considered-wire system
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mode 9 EV = 126.7462 mode 27 EV = 506.4366
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Fig. 10. A symmetric medium (left) and elevated (right) ouency mode of the two-wire system

In Fig. 9 a typical low frequency eigenform is meted. Despite the coupling between
two wires, the form is very similar to that of anhogeneous oscillating elastic string. Above a
certain frequency, however, eigenmodes are compgpsecewise of those of swinging

segments, initially all of them in first mode, imetnext range second modes appear, see Fig.
10.

compliance [m/N]

25 L L L L L
o] 50 100 150 200 250 300
position [m]

Fig. 11. Response to a concentrated force as function ot pbiattack

The medium frequencies, at which segments of theswhay oscillate separately in anti-
phase, are consistent with parametric excitatiams w the variable compliance resulting
from the system geometry, see Fig. 11. There wevshe deflection caused by a static

downward force of 1N, acting on a node on the lowee, evaluated at the point, where the
force is applied.

3. COUPLING
3.1. Wire-Single Pantogr aph

Until now, the source term causing the disturbaincthe catenary was assumed to be
known in advance, as a function or distributionspace and time. In such a case, there is
obviously no feedback between the wire and thequmaph.
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In [7], the pantograph was modeled as a mass-smystem, moving at given speed
along the wire. In such a system, the lateral fasago longer pre-assigned, it will be a result
of the time integration. Here we restrict ourselie@s force, which decreases with increasing
elevation of the wire.

Fig. 12 presents results on the case studied bef@ec. 2, Fig. 3. There are no supports,
now, yet the solution stays bounded due to thetimaof the pantograph’s contact force,
when the wire moves away from it. In the pure striiase, the solution is a fuzzy version of
the characteristic cone of the hyperbolic problévien allowing for bending stiffness, again,
waves may fun in front and behind that area. Wkqua speed of 75% of the wave speed for
the forward motion of the locomotive — which is B86re than usually recommended.

deflection [m)]
deflection [m]

—/ time [s]

O 80 g0 g

position [m] position [m]
Fig. 12. Solutions for elastic pantograph without and wigémthing stiffness of contact wire

Now, eventually, we repeat the calculations fortthe-wire structure presented in Fig. 6.
In Fig 13, the influence of the droppers is cleagn.

time 0.5s

E
5
= 1 "
&
3 os-
0

.l i '
-150 -100 -50 o 50 100 150
position [m] position [m]

deflection [m]

50 100 450 ©

Fig. 13. Solutions for elastic pantograph running on a atntére attached to a messenger wire
3.2. Wire-Two Pantographs

We come now to the case of several pantographsequds the same contact wire. Now,
the second one runs into the wake of the leadireg bat also disturbances from a trailing
pantograph may reach the leading one and causedeasisle fluctuations in the contact
forces, see Fig. 14. Here we present a numerisaltren the case of just two pantographs,
running in a distance of 37m. Otherwise, all sgtiare identical as on the right side of Fig.

13, i.e., we assumed a small bending stiffnessupports and a decreasing characteristic of
the pantographs.
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Fig. 14. Solutions for two elastic pantogres running on a bendingtiff contact wir

SUMMARY

In the case of an unbounc flexible string, the behavior of amnical solutions can b
studiedby evaluation of classical formulatheir stability depends on the relation betws
traveling and wave speedror a finite length of wirethe amplitude of deflections
calculaed by numerical methods. Again, it depends on taeetling speed, which shou
remain well below the speed of elastic transvessales in the wirt

In a next step, the dynamics of the pantograph,eteddas a mul-body system, will
be included, so that the traveling force will nader be pr-assigned but dependent on
solution for the wire deflection. This is of partiar importance if multipl pantographs in a
short distance between each other are consideredisl matter, recentlin [1] results on the
value of contact forces wepeiblishe(, see Fig 15.
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Fig. 15. Contact forces in dependence on wire and pantogregiion [1]
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ZIAWISKA FALOWE
W TRAKCJlI KOLEJOWEJ

Streszczenie
W artykule dyskutowane; zjawiska falowe spowodowane sitamgdnujgcymi w arodkach
ciqggtych jednowymiarowych ze szczego6lnym weinigniem zastosowalo wspotdziatania odbieraka
prqgdu i trakcji elektrycznej w kolejnictwie. Analizowea rozwizzania stacjonarne w przypadku
dziedziny nieograniczonej wraz z efektami brzegowprnay zagadnieniach na przedziatach
skoiczonych. Zbadano wplyw gatkasci ruchomej sity na stabilsd. W uktadach bardziej ztonych
uzywano metod numerycznych w celu obliczenia maksyataprzesumet.
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