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Wave phenomena in one-dimensional media caused
emphasis on application to the interaction betwee
are examined in the case of unbounded domains along with boundary effects in the case of finite 
domains. The influence of the trave
numerical methods are used to find maximal deflections.

INTRODUCTION 
The energy supply to an electrical locomotive or to EMU trains is dependent 

on the contact between pantographs and tract
is moving with a certain speed, the force is generating dynamic deflections in the traction
7]. These are propagating along the wire,
nontrivial interactions with the pantograph.

Fig. 1. Segment of (simplified) traction

In order to minimize fluctuations, a messenger wire is spanned above the actual contact 
wire, which is periodically suspended by droppers holding it at the desired level. 
Consequently, there will be waves running in both wires, 
of the droppers. A typical layout i
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Abstract 
dimensional media caused by moving forces are discussed with special 

emphasis on application to the interaction between pantograph and traction. Stationary solutions 
in the case of unbounded domains along with boundary effects in the case of finite 

The influence of the travelling speed on stability is examined. In more complex structures, 
numerical methods are used to find maximal deflections.  

The energy supply to an electrical locomotive or to EMU trains is dependent 
tact between pantographs and traction wire [1,10-12]. Since the train, in general, 

is moving with a certain speed, the force is generating dynamic deflections in the traction
along the wire, being reflected at supports and boundaries, causing 

tions with the pantograph. 

Segment of (simplified) traction 

In order to minimize fluctuations, a messenger wire is spanned above the actual contact 
wire, which is periodically suspended by droppers holding it at the desired level. 

ly, there will be waves running in both wires, which are coupled at the positions 
pers. A typical layout is presented in Fig. 1. 
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are discussed with special 
and traction. Stationary solutions  

in the case of unbounded domains along with boundary effects in the case of finite 
In more complex structures, 

The energy supply to an electrical locomotive or to EMU trains is dependent  
Since the train, in general,  

is moving with a certain speed, the force is generating dynamic deflections in the traction [5-
being reflected at supports and boundaries, causing 

 

In order to minimize fluctuations, a messenger wire is spanned above the actual contact 
wire, which is periodically suspended by droppers holding it at the desired level. 

which are coupled at the positions 
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Before we will start numerical studies on the 
about wave propagation due to

1. ANALYTICAL SOLUTIONS
We start our investigation from the classical case of the wave equation
 

(Su
 

Here we denote by S the bending stiffness of the medium, by
length and by P the compressing force.
corresponding partial derivatives are indicated by a superposed dot or an apostrophe, 
correspondingly. The external force 
concentrated in each moment 
pantograph. In a typical traction wire, 
is negative. Technically, the ten
tons of mass. This leads in the case of very flexible media to the simpli
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We introduced c2 for the ratio of tension 
the literature on beams there appears the parameter 
the duration of transient processes, and hence use the parameter name 
on columns. 

1.1. Unbounded case 

Solutions to this hyperbolic partial differential equation of second order can be obtained in 
terms of the initial deflections and integrals over initial speed and external force.
 

Fig. 2. Classical wave solution 

Assuming constant coefficients and zero forces, any solution 
Rx∈ has the form  

 

 

Before we will start numerical studies on the two-wire case, let us collect some fact
about wave propagation due to moving forces in a single wire, modeled as a string.

ANALYTICAL SOLUTIONS 
We start our investigation from the classical case of the wave equation as in [2,5,6
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the bending stiffness of the medium, by ρ the mass density per unit of 
the compressing force. Time is denoted by t, position along the wire by 

corresponding partial derivatives are indicated by a superposed dot or an apostrophe, 
The external force f may be modeled as a Dirac distribution, which is 

ed in each moment t at the point Vt, where V is the travelling speed of the 
In a typical traction wire, S may be well neglected in a first approximation, and 

. Technically, the tension is maintained by concrete weights of about two metrical 
tons of mass. This leads in the case of very flexible media to the simplified equati

ρ/),(')',(),( 2 txftxuctxu =−&     

for the ratio of tension P to mass density. Notice that often, instead
the literature on beams there appears the parameter T (for tension). We prefer to reserve 
the duration of transient processes, and hence use the parameter name P as typically in papers 

 

olutions to this hyperbolic partial differential equation of second order can be obtained in 
terms of the initial deflections and integrals over initial speed and external force.

Assuming constant coefficients and zero forces, any solution of (2) on the whole real axis 

)()(),( ctxctxtxu −++= ψφ    

wire case, let us collect some facts 
moving forces in a single wire, modeled as a string. 

as in [2,5,6] 

  (1) 

the mass density per unit of 
, position along the wire by x, the 

corresponding partial derivatives are indicated by a superposed dot or an apostrophe, 
odeled as a Dirac distribution, which is 

is the travelling speed of the 
may be well neglected in a first approximation, and P 

sion is maintained by concrete weights of about two metrical 
fied equation 

  (2) 
 

Notice that often, instead of P, in 
(for tension). We prefer to reserve T for 

as typically in papers 

olutions to this hyperbolic partial differential equation of second order can be obtained in 
terms of the initial deflections and integrals over initial speed and external force. 

 

of (2) on the whole real axis 

  (3) 
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An initial concentrated shift around the origin splits into two waves, one running left, the 
other right, with equal but opposite speeds, see Fig. 2. The functions Φ and Ψ can be 
identified from initial conditions )0,(⋅u  on the deflection and on the initial lateral speed 

)0,()0,( ⋅=⋅ uv & . 
In the relevant case of a nontrivial inhomogeneity f, i.e., when the disturbance is caused by 

an external force, the solution u at a given position x depends at time t on the force terms at all 
positions from which x can be reached at wave speed c in a time span smaller or equal than t. 
In fact, one obtains 
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where u0 and v0 denote initial conditions, defined for all positions. 

 
In the case of an initially undisturbed wire the first two contributions vanish, the solution 

reduces to the double integral of the source term. Given the small size of the contact area 
between wire and pantograph, it is sensitive to assume 

 
)()(),( VttFtxf δ=      (5) 

 
with δ denoting Dirac’s distribution and F the magnitude of the vertical force at time t. This 
renders the inner integration trivial – it yields simply )(τF  or zero. It remains to determine 
the actual interval of the time integration, where the inner integral is nonzero, i.e., when the 
travelling force crosses the influence region of the wave equation. 

Typically, one assumes a harmonic force function of the form F(t)=Fm+Fd sin(Ωt). In that 
case, the integration can be carried out analytically, and we obtain a closed formula for the 
solution. 

Let us study the special case of V=c. In order to calculate the amplitude at a given point 
(x,t) in the upper half-plane on the trajectory of the force, i.e, for x=Vt , we evaluate (4) by 
inserting the special choice of (5).  
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Obviously, with running time t the deflection at the point of contact grows unboundedly, 

proportionally to time and mean contact force. The same is true for all travelling speeds, 
unless a bedding or some supports are added to the setup. 

The case V=c is called critical, because for that choice the derivative of the solution under 
the force becomes infinite, see Figs. 3 and 4. 
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Fig. 3. Solution on t=0 … 0.5s for travelling speed 

In Figs. 3 and 4, we assumed 
[1]. This gives a wave speed of around 120m/s. 
The travelling speed in Fig. 3 is 
obviously a consequence of the lack of suppor
realistic values of the static stiffness as function of 
model of a constant or periodic force, while suitable in rail
pantograph, [3-6]. Later on we will introduce coupling, e.g. reduce the value of the force in a 
nonlinear way in dependence on the wire deflection.

Fig. 4. Solutions at t=0.5s for travelling speed 

Notice that for the original partial differential equation (1), which is of fourth order an
non-hyperbolic, but degenerated parabolic, the discussion is more complex. Solution
found, again, in the form of running waves as in (3), however there is no con

0 … 0.5s for travelling speed V equal 0.75 times the wave speed

In Figs. 3 and 4, we assumed a tension of 20kN, and a mass per length of 
. This gives a wave speed of around 120m/s. The lateral force was constant equal to 

The travelling speed in Fig. 3 is 320km/h. The unrealistic large values of the deflection are, 
obviously a consequence of the lack of supports and, most of all, the lack of coupling
realistic values of the static stiffness as function of x cf. [12]. It has to be stressed that
model of a constant or periodic force, while suitable in rail-wheel contact, is unrealistic for a 

on we will introduce coupling, e.g. reduce the value of the force in a 
nonlinear way in dependence on the wire deflection. 

 
=0.5s for travelling speed V equal to 0, 0.5, 1, 1.5 and 2 times the wave speed

original partial differential equation (1), which is of fourth order an
hyperbolic, but degenerated parabolic, the discussion is more complex. Solution

found, again, in the form of running waves as in (3), however there is no con

 

equal 0.75 times the wave speed c 

kN, and a mass per length of 1.33 kg/m, see 
constant equal to 200N. 

km/h. The unrealistic large values of the deflection are, 
most of all, the lack of coupling. For 
cf. [12]. It has to be stressed that the 

wheel contact, is unrealistic for a 
on we will introduce coupling, e.g. reduce the value of the force in a 

 

equal to 0, 0.5, 1, 1.5 and 2 times the wave speed c 

original partial differential equation (1), which is of fourth order and 
hyperbolic, but degenerated parabolic, the discussion is more complex. Solutions are 

found, again, in the form of running waves as in (3), however there is no constant wave speed. 



 

Superpositions of sinusoidal waves, running at a speed depending on their frequencies
to be considered, see [4,5]. Later we will discuss the magnitude of the dispersion effects by 
numerical experiments. 

1.2. Bounded case 

In the case that the position variable 
formula (4) is not applicable. Instead, it is assumed that the solution is a sum of product terms 
of the form 

 

Now, substituting (7) into 
amplitudes a have to be sine or cosine functions. Further, they have to obey boundary 
conditions. In the Dirichlet case, this implies 

second order differential equation is obtained
allows to define the solution to the initial boundary value problem in a unique way as an 
infinite trigonometric series. 

Most essentially, as a consequence of the boundary conditions,
reflections from the boundaries. Under certain circumstances, superpositions of running 
waves may take the special form of a standing wave.

 
Fig. 5. Solutions for regular rigid supports eac

As we can see from Fig. 5, periodic supports block the growth of the amplitude under the 
force. There are only oscillations in the wake, and the maximal deviation drops to several 
centimeters. However, this setup is still far from realistic.

 
Fig. 6. Geometry of one cell of the

sinusoidal waves, running at a speed depending on their frequencies
]. Later we will discuss the magnitude of the dispersion effects by 

In the case that the position variable x is restricted to a finite interval, 
formula (4) is not applicable. Instead, it is assumed that the solution is a sum of product terms 

∑=
l ll tbxatxu )()(),(    

Now, substituting (7) into the homogeneous version of (2), one obtains that the 
have to be sine or cosine functions. Further, they have to obey boundary 

conditions. In the Dirichlet case, this implies )/cos()( Llxal π= . For the time dependence 

second order differential equation is obtained, which together with the initial conditions 
allows to define the solution to the initial boundary value problem in a unique way as an 

a consequence of the boundary conditions,
tions from the boundaries. Under certain circumstances, superpositions of running 

waves may take the special form of a standing wave. 

Solutions for regular rigid supports each 6m 

As we can see from Fig. 5, periodic supports block the growth of the amplitude under the 
force. There are only oscillations in the wake, and the maximal deviation drops to several 

timeters. However, this setup is still far from realistic. 

Geometry of one cell of the studied system 
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sinusoidal waves, running at a speed depending on their frequencies, have 
]. Later we will discuss the magnitude of the dispersion effects by 

is restricted to a finite interval, ]2/,2/[ LLx −∈ , 
formula (4) is not applicable. Instead, it is assumed that the solution is a sum of product terms 

  (7) 

 
one obtains that the 

have to be sine or cosine functions. Further, they have to obey boundary 
. For the time dependence b a 

, which together with the initial conditions 
allows to define the solution to the initial boundary value problem in a unique way as an 

a consequence of the boundary conditions, we can observe 
tions from the boundaries. Under certain circumstances, superpositions of running 

 

As we can see from Fig. 5, periodic supports block the growth of the amplitude under the 
force. There are only oscillations in the wake, and the maximal deviation drops to several 
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In a more complex structure as e.g. in Fig. 6, which is one cell of the sample layout in 
Fig. 1, analytical considerations become more and more unpractical due to the large number 
of reflections overlaying each other. Consequently, it is preferable to switch to numerical 
approximations. In fact, already the form (7) of an analytical solution – as an infinite series – 
requires eventually a numerical evaluation. For very concentrated source terms, the 
convergence of (7) may be less satisfactory than a direct approach by finite elements or by the 
method of lines.  

2. NUMERICAL SOLUTIONS 

2.1. Semi-Discretization 

One of the most straightforward numerical approaches to the solution of (2) is the 
substitution of the second order partial differentiation by a second order finite difference. An 
alternative method was discussed and applied in [2]. Usually we use a uniform grid with 

stepsize 1...,,0,1 −==−=∆= + nj
n

L
xxxh jj . We denote by uj the deflection at the position 

xj and by vj the corresponding velocity. Next, the value of the second order space derivative 
u’’(x j) is approximated by the difference between uj and the arithmetic mean between its two 
closest neighbors, divided over the square of the stepsize 
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As for the time variable, in numerical calculations we restrict ourselves to a finite set of 

instants t0 through tm as well. However, we do not treat the time derivatives in an analogous 
way as the space derivative. First of all, equations of second order are converted into systems 
of twice as many first order equations, in our case for the two unknown (n+1)-dimensional 
vector functions )(tu&  and )(tv& . Next, instead of approximating both time derivatives e.g. by 
forward differences, the system should be passed to a higher order algorithm for the 
integration of ordinary differential equations, as dopri in the non-stiff case or a BDF-scheme 
in the stiff case, see e.g. [8,9]. 

 
 
Fig. 7. Solutions for wire with (considerable) bending stiffness 

In Fig. 7 we present a solution, where a finite value of the bending stiffness S =200kNm2 
was taken into account. Technically, this is obtained by applying (8) to itself, so that a forth 



 

order derivative is calculated from 
running much faster, before the front of the hyperbolic limit case. On a bounded domain with 
hard boundary conditions, reflections 

 
Fig. 8. Solutions for supported wire with bending stiffness

Now, we are able to combine the effects of various supports 
can be handled easily – and non
fourth order equation (1), however sma
moving force, even when travelling at the hyperbolic wave speed. As opposed to Fig. 5, also 
the wake extends to positions behind the starting point of the force, from the origin to the left. 
However, the small values of the deflection are now due to the hard supports 
present in a real catenary system.

2.2. Modal Analysis 

Until now, the studied system is purely elastic, no energy is dissipated by viscous or 
frictional forces. Consequently, high frequency oscillations are not damped out, so that 
solutions to problems with a concentrated and moving force become quickly very noisy
e.g. [6]. Often this noise is reduced by filtering, e.g. at 20 Hz.
calculate the solution in a form similar to (7), where the amplitude function 
by numerically calculated eigenforms of the elastic system, e.g. as depicted in Fig. 1 or Fig. 6. 
The sum is then cut when the eigenfrequency exc

 

 
Fig. 9. A symmetric low frequency mode of a considered two

order derivative is calculated from five nodal values. Obviously, in the result there are waves, 
running much faster, before the front of the hyperbolic limit case. On a bounded domain with 

dary conditions, reflections interfere with the original wave. 

 

supported wire with bending stiffness 

Now, we are able to combine the effects of various supports – periodic or not, mistuning 
and non-vanishing bending stiffness. In Fig. 8 we see that for the 

fourth order equation (1), however small the bending stiffness S, waves run ahead of the 
ing force, even when travelling at the hyperbolic wave speed. As opposed to Fig. 5, also 

the wake extends to positions behind the starting point of the force, from the origin to the left. 
mall values of the deflection are now due to the hard supports 

present in a real catenary system. We will come back to this in Sec. 3. 

Until now, the studied system is purely elastic, no energy is dissipated by viscous or 
tional forces. Consequently, high frequency oscillations are not damped out, so that 

solutions to problems with a concentrated and moving force become quickly very noisy
. Often this noise is reduced by filtering, e.g. at 20 Hz. Alternatively

calculate the solution in a form similar to (7), where the amplitude function 
cally calculated eigenforms of the elastic system, e.g. as depicted in Fig. 1 or Fig. 6. 

The sum is then cut when the eigenfrequency exceeds the level we are interested in.

 

A symmetric low frequency mode of a considered two-wire system 
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five nodal values. Obviously, in the result there are waves, 
running much faster, before the front of the hyperbolic limit case. On a bounded domain with 

 

periodic or not, mistuning 
vanishing bending stiffness. In Fig. 8 we see that for the 

, waves run ahead of the 
ing force, even when travelling at the hyperbolic wave speed. As opposed to Fig. 5, also 

the wake extends to positions behind the starting point of the force, from the origin to the left. 
mall values of the deflection are now due to the hard supports – which are not 

Until now, the studied system is purely elastic, no energy is dissipated by viscous or 
tional forces. Consequently, high frequency oscillations are not damped out, so that 

solutions to problems with a concentrated and moving force become quickly very noisy, see 
Alternatively, we may try to 

calculate the solution in a form similar to (7), where the amplitude function a(x) is replaced 
cally calculated eigenforms of the elastic system, e.g. as depicted in Fig. 1 or Fig. 6. 

eeds the level we are interested in. 
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Fig. 10. A symmetric medium (left) and elevated (right)  frequency mode of the two-wire system 

In Fig. 9 a typical low frequency eigenform is presented. Despite the coupling between 
two wires, the form is very similar to that of a homogeneous oscillating elastic string. Above a 
certain frequency, however, eigenmodes are composed piecewise of those of swinging 
segments, initially all of them in first mode, in the next range second modes appear, see Fig. 
10. 

 

 
 

Fig. 11. Response to a concentrated force as function of point of attack 

The medium frequencies, at which segments of the wires may oscillate separately in anti-
phase, are consistent with parametric excitations due to the variable compliance resulting 
from the system geometry, see Fig. 11. There we show the deflection caused by a static 
downward force of 1N, acting on a node on the lower wire, evaluated at the point, where the 
force is applied.  

3. COUPLING 

3.1. Wire-Single Pantograph 

Until now, the source term causing the disturbance in the catenary was assumed to be 
known in advance, as a function or distribution on space and time. In such a case, there is 
obviously no feedback between the wire and the pantograph.  
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In [7], the pantograph was modeled as a mass-spring system, moving at given speed 
along the wire. In such a system, the lateral force is no longer pre-assigned, it will be a result 
of the time integration. Here we restrict ourselves to a force, which decreases with increasing 
elevation of the wire. 

Fig. 12 presents results on the case studied before in Sec. 2, Fig. 3. There are no supports, 
now, yet the solution stays bounded due to the reaction of the pantograph’s contact force, 
when the wire moves away from it. In the pure string case, the solution is a fuzzy version of 
the characteristic cone of the hyperbolic problem. When allowing for bending stiffness, again, 
waves may fun in front and behind that area. We picked a speed of 75% of the wave speed for 
the forward motion of the locomotive – which is 5% more than usually recommended. 

 
 
Fig. 12. Solutions for elastic pantograph without and with bending stiffness of contact wire 

Now, eventually, we repeat the calculations for the two-wire structure presented in Fig. 6. 
In Fig 13, the influence of the droppers is clearly seen. 

   
 
Fig. 13. Solutions for elastic pantograph running on a contact wire attached to a messenger wire 

3.2. Wire-Two Pantographs 

We come now to the case of several pantographs pressed to the same contact wire. Now, 
the second one runs into the wake of the leading one, but also disturbances from a trailing 
pantograph may reach the leading one and cause considerable fluctuations in the contact 
forces, see Fig. 14. Here we present a numerical result in the case of just two pantographs, 
running in a distance of 37m. Otherwise, all settings are identical as on the right side of Fig. 
13, i.e., we assumed a small bending stiffness, no supports and a decreasing characteristic of 
the pantographs. 
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Fig. 14. Solutions for two elastic pantograph

SUMMARY 
In the case of an unbounded

studied by evaluation of classical formulas, 
traveling and wave speed. For a finite length of wire, 
calculated by numerical methods. Again, it depends on the travelling speed, which should 
remain well below the speed of elastic transversal waves in the wire.

 In a next step, the dynamics of the pantograph, modeled as a multi
be included, so that the traveling force will no longer be pre
solution for the wire deflection. This is of particular importance if multiple
short distance between each other are considered. In this matter, recently 
value of contact forces were published

 
Fig. 15. Contact forces in dependence on wire and pantograph motion [1].

 

Solutions for two elastic pantographs running on a bending-stiff contact wire

In the case of an unbounded flexible string, the behavior of analytical solutions can be 
by evaluation of classical formulas, their stability depends on the relation between 

For a finite length of wire, the amplitude of deflections is 
ed by numerical methods. Again, it depends on the travelling speed, which should 

remain well below the speed of elastic transversal waves in the wire. 
In a next step, the dynamics of the pantograph, modeled as a multi

be included, so that the traveling force will no longer be pre-assigned but dependent on the 
solution for the wire deflection. This is of particular importance if multiple
short distance between each other are considered. In this matter, recently in [1] 

published, see Fig 15. 

Contact forces in dependence on wire and pantograph motion [1]. 

 

stiff contact wire 

ytical solutions can be 
stability depends on the relation between 

the amplitude of deflections is 
ed by numerical methods. Again, it depends on the travelling speed, which should 

In a next step, the dynamics of the pantograph, modeled as a multi-body system, will 
assigned but dependent on the 

solution for the wire deflection. This is of particular importance if multiple pantographs in a 
in [1] results on the 

 



 

2239 

ZJAWISKA FALOWE 
W TRAKCJI KOLEJOWEJ 

Streszczenie 
W artykule dyskutowane są zjawiska falowe spowodowane siłami wędrującymi w ośrodkach 

ciągłych jednowymiarowych ze szczególnym uwzględnieniem zastosowań do współdziałania odbieraka 
prądu i trakcji elektrycznej w kolejnictwie. Analizowano rozwiązania stacjonarne w przypadku 
dziedziny nieograniczonej wraz z efektami brzegowymi przy zagadnieniach na przedziałach 
skończonych. Zbadano wpływ prędkości ruchomej siły na stabilność. W układach bardziej złoŜonych 
uŜywano metod numerycznych w celu obliczenia maksymalnych przesunięć. 
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