PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of aerodynamic phenomena in selected quarter of building development in warsaw downtown with reference to air pollution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Air pollution, both gaseous and in the form of dust, is a problem that affects numerous densely built-up areas of modern cities. Based on this assumption, the authors of the following paper have examined an exemplary part of urban space with various building developments located in Warsaw downtown. Both experimental and numerical studies were conducted for the two prevailing wind directions observed in this area, that is the west wind and the south-west wind. Experimental research was conducted with the application of two known laboratory techniques, i.e., the oil visualization method and the sand erosion technique. The studies were conducted in an open-circuit wind tunnel. Commercial ANSYS Fluent program was used for numerical simulations. The k-e realizable turbulence model, often applied for this type of tasks, was used in the calculations. As a result, distributions of the velocity amplification coefficient were obtained in the area under consideration, as well as images that present the averaged airflow direction. On basis thereof, potential zones where contamination accumulation may occur were determined. The impact that introduction of a hypothetical high-rise building into the area would exert on wind conditions in its vicinity was also tested. High-rise buildings tend to intensify airflow in their immediate vicinity. Thus, they can improve ventilation conditions of nearby streets. However, in this particular case, the research prompted the conclusion that the proposed building causes turbulence and increased velocity gradients in the majority of elevation planes. On the other hand, in the ground-level zone, the building blocks rather than intensifies the airflow.
Słowa kluczowe
Rocznik
Strony
1--18
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Contemporary Architecture, Interior Design and Industrial Forms, Faculty of Architecture Warsaw University of Technology, Koszykowa 55 00-659 Warszawa
  • Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
  • Faculty of Power and Aeronautical Engineering, Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
Bibliografia
  • 1. Aristodemou E. et al. (2020), Turbulent flows and pollution dispersion around tall buildings using adaptive large eddy simulation (LES), „Buildings” 10(10), DOI: 10.3390/BUILDINGS10070127.
  • 2. Blocken B. et al. (2011), Application of computational fluid dynamics in building performance simulation for the outdoor environment: An overview, „Journal of Building Performance Simulation” 4(2), pp. 157–184. DOI: 10.1080/19401493.2010.513740.
  • 3. Blocken B. and Carmeliet J. (2004), Pedestrian wind environment around buildings: Literature review and practical examples, „Journal of Thermal Envelope and Building Science” 28(2), pp. 107–159. DOI: 10.1177/1097196304044396.
  • 4. Blocken B., Stathopoulos T. and van Beeck, J.P.A.J. (2016), Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment, „Building and Environment” 100, pp. 50–81. DOI: 10.1016/j.buildenv.2016.02.004.
  • 5. Borrego C. et al. (2006), How urban structure can affect city sustainability from an air quality perspective, „Environmental Modelling and Software” 21(4), pp. 461–467. DOI: 10.1016/j.envsoft.2004.07.009.
  • 6. Corrigan C. E. et al. (2008), Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles, „Atmospheric Chemistry and Physics”, 8(3), pp. 737–747. DOI: 10.5194/acp-8-737-2008.
  • 7. Dąbrowiecki P. et al. (2021), Impact of Air Pollution on Lung Function among Preadolescent Children in Two Cities in Poland, „Journal of Clinical Medicine” 10(11), p. 2375. DOI: 10.3390/jcm10112375.
  • 8. Duangsuwan S. and Jamjareekulgarn P. (2020), Development of drone real-time air pollution monitoring for mobile smart sensing in areas with poor accessibility, „Sensors and Materials”, 32(2), pp. 511–520. DOI: 10.18494/SAM.2020.2450.
  • 9. Duthinh D. and Simiu E. (2011), The Use of Wind Tunnel Measurements in Building Design, „Wind Tunnels and Experimental Fluid Dynamics Research”, (July). DOI: 10.5772/18670.
  • 10. En N.E. and Normy P. (2008), PN-EN 1991-1-4. Oddziaływania na konstrukcje. Część 1-4: Oddziaływania ogólne. Oddziaływania wiatru.
  • 11. Franke J. et al. (2007), Best practice guideline for the CFD simulation of flows in the urban environment, COST action. Available at: http://cat.inist.fr/?aModele=afficheN&cpsidt=23892111%5Cnhttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Best+practice+guideline+for+the+CFD+simulation+of+flows+in+the+urban+environment#0.
  • 12. Fronczak M. (2018), Kształtowanie struktur urbanistycznych na terenach zagrożonych smogiem i zanieczyszczeniem powietrza, „Przestrzeń, Urbanistyka, Architektura” 1, pp. 255–270. DOI:10.4467/00000000pua.18.018.8626.
  • 13. Generalna Inspekcja Ochorny Środowiska (no date), Bieżące dane pomiarowe, available at: http://powietrze.gios.gov.pl/pjp/current.
  • 14. Gumowski K. et al. (2015), Comparative analysis of numerical and experimental studies of the airflow around the sample of urban development, „Bulletin of the Polish Academy of Sciences: Technical Sciences” 63(3), pp. 729–737. DOI: 10.1515/bpasts-2015-0084.
  • 15. International Renewable Energy Agency (no date), Global Wind Atlas, available at: https://irena.masdar.ac.ae/GIS/?&tool=dtu:gwa&map=103.
  • 16. Jędrzejewski M., Pocwierz M. and Zielonko-Jung K. (2017), The problem of airflow around building clusters in different configurations, „Archive of Mechanical Engineering” 64(3), pp. 401–418. DOI: 10.1515/meceng-2017-0024.
  • 17. Khaled M. and Dewidar K. (2010), Anti Smog Architecture: a New Catalyst for Cleaner, in: International Conference on Engineering Solutions for Sustainable Development, American University in Cairo, Cairo, doi: 10.13140/RG.2.1.4614.4242.
  • 18. Kiciński J. (2018), Smog – Poland’s pressing problem. Anti-smog technologies in 3rd International Conference on Energy and Environmental Protection, AGH University of Science and Technology, Kraków, pp. 1–7.
  • 19. Kleczkowski P. (2019), Smog w Polsce. Przyczyny, skutki, przeciwdziałanie, Wydawnictwo Naukowe PWN, Warszawa.
  • 20. Landolsi T. et al. (2019), Pollution monitoring system using position-aware drones with 802.11 Ad-Hoc networks, 2018 IEEE Conference on Wireless Sensors, ICWiSe 2018, IEEE, pp. 40–43. DOI: 10.1109/ICWISE.2018.8633285.
  • 21. Łukasz F. et al. (2019), Badania modelowe dynamicznego działania na warstwę przyziemną atmosfery - wieże wentylacyjne w konfiguracji liniowej na terenie określonej chropowatości, in Dynamiczne przewietrzanie i redukcja smogu obszarów zurbanizowanych ze szczególnym uwzględnieniem miasta Krakowa, Politechnika Krakowska, Kraków.
  • 22. Mazurek H. and Badyda A. (2018), Smog. Kondekwencje zdrowotne zanieczyszczeń powietrza. PZWL Wydawnictwo Lekarskie, Warszawa.
  • 23. Michalak A. (2020), Energy Poverty in the Context of Smog As Exemplified By Poland, GEOLINKS Conference proceedings, Book 2 Vol. 2, 2, pp. 195–204. DOI: 10.32008/geolinks2020/b2/v2/19.
  • 24. O., U. S. (no date) Dron antysmogowy czyli System Obserwacji i Wspomagania Analizy powietrza “SOWA.”, available at: https://usm.net.pl/produkty/1-system-obserwacji-i-wspomagania-analizypowietrza-sowa.
  • 25. Irwin P., Scott D., Denoon R. (2013), Wind Tunnel Testing of High-Rise Buildings, Routledge.
  • 26. Rada Miasta Stołecznego Warszawy (2010) Uchwała NR XCIV/2749/2010 Rady Miasta Stołecznego Warszawy z dnia 9 listopada 2010 r. w sprawie miejscowego planu zagospodarowania przestrzennego w rejonie Pałacu Kultury i Nauki w Warszawie.
  • 27. Reiter S. (2008), Validation Process for CFD Simulations of Wind Around Buildings, European Built Environment CAE Conference, (November), pp. 1–18, available at: http://orbi.ulg.ac.be/handle/2268/20400.
  • 28. Reiter S. (2010), Assessing wind comfort in urban planning, „Environment and Planning B: Planning and Design”, 37(5), pp. 857–873. doi: 10.1068/b35154.
  • 29. Sanz-Rodrigo J., van-Beeck J.P.A.J., Dezsö-Weidinger G. (2007), Wind tunnel simulation of the wind conditions inside bidimensional forest clear-cuts. Application to wind turbine siting, „Journal of Wind Engineering and Industrial Aerodynamics” 95(7), pp. 609–634. DOI: doi.org/10.1016/j.jweia.2007.01.001.
  • 30. Schwartz J., Laden F. and Zanobetti A. (2002), The Concentration – Response Relation between PM 2 . 5 and Daily Deaths, „Environmental Health Perspectives”, 110(10), pp. 1025–1029.
  • 31. Stanaszek-Tomal, E. (2021), Anti-Smog Building and Civil Engineering Structures, „Processes”, 9 (8), p. 1446. DOI: 10.3390/pr9081446.
  • 32. Stathopoulos T. (2009), Wind and comfort, in 5th European and African Conference on Wind Engineering, EACWE 5, Proceedings.
  • 33. Stathopoulos T. (2011), Introduction to environmental aerodynamics, in „CISM International Centre for Mechanical Sciences, Courses and Lectures”, Concordia University, Montreal, pp. 3–30. doi: 10.1007/978-3-7091-0953-3_1.
  • 34. Szymocha S. and Osuchowski J. (2019), Pomiary przy pomocy bezzałogowych statków powietrznych. Diagnostyka linii wysokiego napięcia, Fundacja na Rzecz Czystej Energii, Poznań.
  • 35. Tominaga, Y. et al. (2008), AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, „Journal of Wind Engineering and Industrial Aerodynamics”, 96(10–11), pp. 1749–1761. DOI: 10.1016/j.jweia.2008.02.058.
  • 36. Villa, T. et al. (2016), An overview of small unmanned aerial vehicles for air quality measurements: Present applications and future prospectives, „Sensors”, 16(7), pp. 12–20. doi: 10.3390/s16071072.
  • 37. Xia, Q. et al. (2013), Effects of building lift-up design on pedestrian wind environment, in Proceedings of the 8th Asia-Pacific Conference on Wind Engineering, APCWE 2013, pp. 993–1002. DOI: 10.3850/978-981-07-8012-8_128.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a180087-482a-4193-ae40-3434a4d59282
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.