Identyfikatory
Warianty tytułu
Determination of creep parameters used in constitutive modelling of cohesive soils
Języki publikacji
Abstrakty
The paper presents methods of determining creep parameters based on uniaxial compression testing. Relevant analyses were carried out on the basis ofthe time resistance concept. Evaluation of the strain-time one-dimensional behaviour ofsoil is also described. The aim of this research was to put some light on methods of determination of creep parameters used in various constitutive creep models and to develop the reliable interpretation approach. In this work the values for creep parameters were defined with the help of oedometer tests on reconstituted clay samples from Chmielów.
Czasopismo
Rocznik
Tom
Strony
873--882
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
- Akademia Górniczo-Hutnicza, al. AdamaMickiewicza 30, 30-059 Kraków
autor
- Akademia Górniczo-Hutnicza, al. AdamaMickiewicza 30, 30-059 Kraków
Bibliografia
- 1. ALONSO E.E., GENS A., LLORET A. 2000 - Precompression design for secondary settlement reduction. Géotechnique, 50 (6): 645-656.
- 2. ASHRAFI M. 2014 - Implementation of a Critical State Soft Soil Creep Model with Shear Stiffness. Master thesis. Norwegian Univ. of Science and Technology, Trondheim.
- 3. BJERRE J. 2015 - Development and Evaluation of an Effective Stress Based Model for Soft Clays. PhD dissertation. Norwegian Univ. of Science and Technology, Trondheim.
- 4. BJERRUM L. 1967 - Engineering Geology of Norwegian Normally-Consolidated Marine Clays as Related to Settlements of Buildings. Géotechnique, 17 (2): 83-118.
- 5. BUISMAN A.S. 1936 - Results of long duration settlement tests. Proceedings of International Conference on Soil Mechanics and Foundation Engineering, 1: 103-106.
- 6. DEGAGO S.A., GRIMSTAD G., JOSTAD H.P., NORDAL S., OLSSON M. 2011 - Use and misuse of the isotache concept with respect to creep hypotheses A and B. Géotechnique, 61 (10): 897-908.
- 7. DEGAGO S.A., GRIMSTAD G., JOSTAD H.P., NORDAL S. 2013 - Misconceptions about experimental substantiation of creep hypothesis A. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris.
- 8. DEGAGO S.A., JOSTAD H.P., OLSSON M., GRIMSTAD G., NORDAL S. 2010 - Time and stress compressibility of clays during primary consolidation. Proc. 7th NUMGE, Trondheim: 125-130.
- 9. DOBAK P., GASZYŃSKI J. 2015 - Evaluation of soil permeability from consolidation analysis based on Terzaghi’s and Biot’s theory. Geol. Quart., 59 (2): 373-381.
- 10. FENG T.W. 1991 - Compressibility and permeability of natural soft clays and surcharging to reduce settlements. PhD thesis, Univ. of Illinois at Urbana-Champaign, Illinois.
- 11. GRAY H. 1936 - Stress distribution in elastic solids. Proceedings of International Conference on Soil Mechanics and Foundations Engineering, 2: 157-168.
- 12. GRIMSTAD G. 2016 - Unified enhanced soft clay creep model - user manual and documentation. Norw. Univ. Scienc. Techn.
- 13. GRIMSRAD G., DEGAGO S.A. 2010 - A non-associated creep model for structured anisotropic clay (n-SAC). Numerical Methods in Geotechnical Engineering.
- 14. GRIMSTAD G., DEGAGO S.A., NORDAL S., KARSTUNEN M. 2010 - Modeling creep and rate effects in structured anisotropic soft clays. Acta Geotech., 5: 69-81.
- 15. GRIMSTAD G., KARSTUNEN M., JOSTAD H.P., SIVASI- THAMPARAM N., MEHLI M., ZWANENBURG C., HAAN E., AMIRI S.A.G., BOUMEZERANE D., KADIVAR M., ASHRAFI M.A.H., R0NNINGEN J.A. 2017 - Creep of geomaterials - some finding from the EU project CREEP. Europ. J. Environ. Civil Eng.: 1-16, http://dx.doi.org/10.1080/19648189.2016.1271360.
- 16. JAMIOLKOWSKI M., LADD C.C., GERMAINE J.T., LANCELLOTTA R. 1985 - New developments in field and laboratory testing of soils. Proc. 11th ICSMFE, Boston, 2: 57-153.
- 17. JANBU N. 1969 - The resistance concept applied to deformations of soils. 7th International Conference Soil Mechanics Foundation Engineering, Mexico city.
- 18. KARLSSON M., YANNIE J. 2016 - Implementation of a Modified Anisotropic Creep Model with structure. Proceedings of the 2016 COMSOL Conference in Munich (2016) for soft soils with the Use of COMSOL. Physics Builder.
- 19. LADD C.C., F00TTR., ISHIHARA K., SCHLOSSER F., POULOS H.G. 1977 - Stress - deformation and strength characteristics. State of the art report. Proc. 9th ICSMFE, Tokyo, 2: 421-494.
- 20. LARSSON R. 1986 - Consolidation of soft soils, Swedish Geotechnical Institute, Report 29, Linkoping.
- 21. LEONI M., KARSTUNEN M., VERMEER P.A. 2008 - Anisotropic creep model for soft soils. Géotechnique, 58 (3): 215-226.
- 22. MESRI G., CASTRO A. 1987 - The Ca/Cc concept and K0 during secondary compression. J. Geotechn. Engineering Division, ASCE, 112 (3): 230-247.
- 23. MESRI G., CHOI Y.K. 1985 - The uniqueness of the end-of primary (EOP) void ratio-effective stress relationship. Proc. 11th Int. Conf. Soil Mech. Found. Eng., San Francisco, 2: 587-590.
- 24. NEHER H.P., WEHNERT M., BONNIER P.G. 2001 - An evaluation of soft soil models based on trial embankments. [W:] C.S. Desai (red.), Computer Methods and Advances in Geomechanics. Balkema, Rotterdam: 373-378.
- 25. OLEK B.S. 2017 - Identyfikacja quasi-filtracyjnej fazy konsolidacji z zastosowaniem nowych metod interpretacji badań konsolidometrycznych. Dysertacja doktorska, AGH.
- 26. OLEK B.S., WOŹNIAK H. 2017 - Determination of quasi-filtration phase of consolidation based on experimental and theoretical course of the uniaxial deformation and distribution of pore pressure. Geology, Geophysics, Environment, 42 (3): 353-363.
- 27. OLEK B.S., WOŹNIAK H., BORECKA A. 2016 - Evaluation of consolidation results by the settlement rate approach. Electronic J. Geotechn. Engineering, 21 (7): 1583-1595.
- 28. PERZYNA P. 1963 - The constitutive equations for rate sensitive plastic materials. Quart. Appl. Math., 20: 321-332.
- 29. PERZYNA P. 1966 - On the constitutive equations in the viscoplasticity. Mechanics of Continuum, Proc. Int. Conf., Varna, September, 105-122.
- 30. SINGH S. 2001 - Confined Aquifer Parameters from Temporal Derivative of Drawdowns. J. of Hydraulic Engineering, 127 (6): 466-470.
- 31. SIVASITHAMPARAM N., KARSTUNEN M., BONNIER P. 2015 - Modelling creep behaviour of anisotropic soft soils. Computers and Geotechnics, 69: 46-57.
- 32. SVANØ G. 1986 - Program KRYKON, documentation and manual (The “Soft clay deformation” project.), STF69F86017. Trondheim, Norway.
- 33. ŠUKLJE L. 1957 - The analysis of the consolidation process by the isotaches method. Proc. 4th ICSMFE, London, 1: 200-206.
- 34. VERMEER P.A., NEHER H.P. 1999 - A soft soil model that accounts for creep. Proc. Int. Symp. Beyond 2000 on Computational Geotechnics, Amsterdam. Balkema, Rotterdam: 249-261.
- 35. YIN Z.-Y., KARSTUNEN M. 2011 - Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration. Acta Mech. Solida Sinica, 24: 216-230.
- 36. YIN Z.-Y., CHANG C.S., KARSTUNEN M., HICHER P.Y. 2010 - An anisotropic elastic-viscoplastic model for soft clays. Intern. J. Solids and Structures, 47: 665-677.
- 37. YIN J.H., ZHU J.G., GRAHAM J. 2002 - A new elastic-viscoplastic model for time dependent behaviour of normally and over consolidated clays: theory and verification. Canad. Geotechn. J., 39 (1): 157-173.
- 38. ZHOU C., YIN, J.H., ZHU J.G., CHENG C.M. 2005 - Elastic anisotropic viscoplastic modeling of the strain-rate-dependent stress-strain behaviour of K0-consolidated natural marine clays in triaxial shear tests. ASCE. Intern. J. Geomechanics, 5 (3): 218-232.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a17f3f2-1409-417e-9ead-c3a6e96fc685