PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biomechanical characterization of bilateral pedicle screw internal fixation combinations on lumbar vertebrae

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pedicle screw fixation has been considered a suitable surgical intervention for addressing a diverse range of indications involving the lumbar spinal segments, but the impact of bilateral pedicle screw internal fixation combinations on the stability and flexibility of vertebral body motion has been limited. This study aimed to the effect of pedicle screw internal fixation on the mechanical characterization of lumbar multi-segmental vertebra under various loading conditions.
Rocznik
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
  • School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
  • School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
autor
  • The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
Bibliografia
  • [1] Ambati DV, Wright EK, Lehman RA, Kang DG, Wagner SC, Dmitriev AE (2015) Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. The Spine Journal 15:1812–1822. doi: 10.1016/j.spinee.2014.06.015
  • [2] An HS, Singh K, Vaccaro AR, Wang G, Yoshida H, Eck J, McGrady L, Lim T-H (2004) Biomechanical evaluation of contemporary posterior spinal internal fixation configurations in an unstable burst-fracture calf spine model: special references of hook configurations and pedicle screws. Spine 29:257–262
  • [3] Burton D, McIff T, Fox T, Lark R, Asher MA, Glattes RC (2005) Biomechanical analysis of posterior fixation techniques in a 360 arthrodesis model. Spine 30:2765– 2771
  • [4] Cai X-Y, YuChi C-X, Du C-F, Mo Z-J (2020) The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study. Med Biol Eng Comput 58:1695–1705. doi: 10.1007/s11517-020-02189-7
  • [5] Chan RW, Titze IR (2003) Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Annals of biomedical engineering 31:482– 491. doi: 10.1114/1.1561287
  • [6] Chen S-H, Lin S-C, Tsai W-C, Wang C-W, Chao S-H (2012) Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery -- a finite element analysis. BMC Musculoskeletal Disorders 13:72. doi: 10.1186/1471-2474-13-72
  • [7] Crolla JP, Lawless BM, Cederlund AA, Aspden RM, Espino DM (2022) Analysis of hydration and subchondral bone density on the viscoelastic properties of bovine articular cartilage. BMC Musculoskeletal Disorders 23:228. doi: 10.1186/s12891-022- 05169-0
  • [8] Gautschi OP, Schatlo B, Schaller K, Tessitore E (2011) Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurgical Focus 31:E8. doi: 10.3171/2011.7.FOCUS11168
  • [9] Goto K, Tajima N, Chosa E, Totoribe K, Kuroki H, Arizumi Y, Arai T (2002) Mechanical analysis of the lumbar vertebrae in a three-dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model. Journal of orthopaedic science 7:243–246
  • [10] Griza S, de Andrade CEC, Batista WW, Tentardini EK, Strohaecker TR (2012) Case study of Ti6Al4V pedicle screw failures due to geometric and microstructural aspects. Engineering Failure Analysis 25:133–143
  • [11] Harper RA, Pfeiffer FM, Choma TJ (2019) The minipig as a potential model for pedicle screw fixation: morphometry and mechanics. Journal of Orthopaedic Surgery and Research 14:246. doi: 10.1186/s13018-019-1292-9
  • [12] Heary RF, Kumar S (2007) Decision-making in burst fractures of the thoracolumbar and lumbar spine. Indian journal of orthopaedics 41:268
  • [13] HELIÖVAARA M, MÄKELÄ M, KNEKT P, IMPIVAARA O, AROMAA A (1991) Determinants of sciatica and low-back pain. Spine 16:608–614
  • [14] Hohmann E, Keough N, Glatt V, Tetsworth K, Putz R, Imhoff A (2019) The mechanical properties of fresh versus fresh/frozen and preserved (Thiel and Formalin) long head of biceps tendons: A cadaveric investigation. Annals of Anatomy 221:186–191. doi: 10.1016/j.aanat.2018.05.002
  • [15] Huang W, Luo T (2013) Efficacy analysis of pedicle screw internal fixation of fractured vertebrae in the treatment of thoracolumbar fractures. Experimental and therapeutic medicine 5:678–682
  • [16] Ito M, Fay LA, Ito Y, Yuan MR, Edwards TW, Yuan HA (1997) The Effect of Pulsed Electromagnetic Fields on Instrumented Posterolateral Spinal Fusion and DeviceRelated Stress Shielding1996 Program Committee. Spine 22:382–388
  • [17] Li W, Shepherd DET, Espino DM (2020) Frequency dependent viscoelastic properties of porcine brain tissue. Journal of the Mechanical Behavior of Biomedical Materials 102:103460. doi: 10.1016/j.jmbbm.2019.103460
  • [18] Li W, Shepherd DET, Espino DM (2021) Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue. Journal of the Mechanical Behavior of Biomedical Materials 114:104204. doi: 10.1016/j.jmbbm.2020.104204
  • [19] Li W, Shepherd DET, Espino DM (2021) Investigation of the Compressive Viscoelastic Properties of Brain Tissue Under Time and Frequency Dependent Loading Conditions. Annals of Biomedical Engineering. doi: 10.1007/s10439-021-02866-0
  • [20] Liu C, Kamara A, Yan Y (2018) Investigation into the biomechanics of lumbar spine micro-dynamic pedicle screw. BMC Musculoskeletal Disorders 19:231. doi: 10.1186/s12891-018-2132-5
  • [21] Mahmood H, Shepherd DET, Espino DM (2018) Surface damage of bovine articular cartilage-off-bone: the effect of variations in underlying substrate and frequency. BMC Musculoskelet Disord 19:384. doi: 10.1186/s12891-018-2305-2
  • [22] McKinley TO, McLain RF, Yerby SA, Sharkey NA, Sarigul-Klijin N, Smith TS (1999) Characteristics of pedicle screw loading: effect of surgical technique on intravertebral and intrapedicular bending moments. Spine 24:18–24
  • [23] Mu S, Wang J, Gong S (2022) Mechanical Analysis of Posterior Pedicle Screw System Placement and Internal Fixation in the Treatment of Lumbar Fractures. Computational and Mathematical Methods in Medicine 2022:e6497754. doi: 10.1155/2022/6497754
  • [24] Nayak AN, Gutierrez S, Billys JB, Santoni BG, Castellvi AE (2013) Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages. The Spine Journal 13:1331–1338
  • [25] Ozer AF, Oktenoglu T, Egemen E, Sasani M, Yilmaz A, Erbulut DU, Yaman O, Suzer T (2017) Lumbar single-level dynamic stabilization with semi-rigid and full dynamic systems: a retrospective clinical and radiological analysis of 71 patients. Clinics in Orthopedic Surgery 9:310
  • [26] Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 29:1938–1944
  • [27] Perna A, Smakaj A, Vitiello R, Velluto C, Proietti L, Tamburrelli FC, Maccauro G (2022) Posterior percutaneous pedicle screws fixation versus open surgical instrumented fusion for thoraco-lumbar spinal metastases palliative management: a systematic review and meta-analysis. Frontiers in Oncology 12:884928
  • [28] Roy-Camille R, Saillant G, Mazel C (1986) Internal fixation of the lumbar spine with pedicle screw plating. Clinical Orthopaedics and Related Research® 203:7–17
  • [29] Samini F, Gharedaghi M, Khajavi M, Samini M (2014) The etiologies of low back pain in patients with lumbar disk herniation. Iranian Red Crescent Medical Journal 16
  • [30] Sanpera Jr I, Piza-Vallespir G, Burgos-Flores J (2014) Upper thoracic pedicle screws loss of fixation causing spinal cord injury. Journal of Pediatric Orthopaedics 34:e39
  • [31] Scifert JL, Sairyo K, Goel VK, Grobler LJ, Grosland NM, Spratt KF, Chesmel KD (1999) Stability Analysis of an Enhanced Load Sharing Posterior Fixation Device and Its Equivalent Conventional Device in a Calf Spine Model. Spine 24:2206
  • [32] Smedley J, Inskip H, Cooper C, Coggon D (1998) Natural history of low back pain: a longitudinal study in nurses. Spine 23:2422–2426
  • [33] Song M, Sun K, Li Z, Zong J, Tian X, Ma K, Wang S (2021) Stress distribution of different lumbar posterior pedicle screw insertion techniques: a combination study of finite element analysis and biomechanical test. Sci Rep 11:12968. doi: 10.1038/s41598- 021-90686-6
  • [34] Szarko M, Muldrew K, Bertram JEA (2010) Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. Bmc Musculoskeletal Disorders 11. doi: Artn 231 10.1186/1471-2474-11-231
  • [35] Tai C-L, Chen W-P, Liu M-Y, Li Y-D, Tsai T-T, Lai P-L, Hsieh M-K (2022) Biomechanical comparison of pedicle screw fixation strength among three different screw trajectories using single vertebrae and one-level functional spinal unit. Frontiers in Bioengineering and Biotechnology 10
  • [36] Tschugg A, Hartmann S, Lener S, Rietzler A, Sabrina N, Thomé C (2017) Minimally invasive spine surgery in lumbar spondylodiscitis: a retrospective single-center analysis of 67 cases. European Spine Journal 26:3141–3146
  • [37] Wang H, Peng J, Zeng Q, Zhong Y, Xiao C, Ye Y, Huang W, Liu W, Luo J (2020) Dynesys system vs posterior decompression and fusion for the treatment of lumbar degenerative diseases. Medicine 99
  • [38] Wilke H-J, Geppert J, Kienle A (2011) Biomechanical in vitro evaluation of the complete porcine spine in comparison with data of the human spine. Eur Spine J 20:1859–1868. doi: 10.1007/s00586-011-1822-6
  • [39] Willett K, Hearn T, Cuncins A (1993) Biomechanical testing of a new design for Schanz pedicle screws. Journal of orthopaedic trauma 7:375–380
  • [40] Yaman O, Demir T, Arslan AK, Iyidiker MA, Tolunay T, Camuscu N, Ulutas M (2015) The comparison of pullout strengths of various pedicle screw designs on synthetic foams and ovine vertebrae. Turkish neurosurgery 25
  • [41] Yildirim OS, Aksakal B, Hanyaloglu SC, Erdogan F, Okur A (2006) Hydroxyapatite dip coated and uncoated titanium poly-axial pedicle screws: an in vivo bovine model. Spine 31:E215–E220
  • [42] Zou X, Li H, Teng X, Xue Q, Egund N, Lind M, Bünger C (2005) Pedicle screw fixation enhances anterior lumbar interbody fusion with porous tantalum cages: an experimental study in pigs. Spine 30:E392–E399
Uwagi
Brak numeracji stron
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a12ac41-e463-475f-be13-a7b5b6fdb03c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.