Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study presents spatial vibration modelling of steel–concrete composite beams. Structures of this type are commonly used as elements of composite floors and primary carrying girders in bridge structures. Two-dimensional models used to date did not enable analysis of all eigenmodes, specifically torsional, flexural horizontal, and distortional. A discrete computational model was developed in the convention of the rigid finite element method, the so-called RFEM model. It was assumed that the concrete slab and the steel I-section would be modelled separately. This approach realistically reflects the actual performance of the connection, comprising studs connecting the concrete slab and the steel section. The model was used to analyse two steel–concrete composite beams with different connector spacings. The paper presents the results of experiments conducted on the two composite beams. Their dynamic characteristics, including frequency and vibration modes, were determined with impulse response methods. Based on experimental research, identification of connection parameters with substitute longitudinal moduli of elasticity of reinforced concrete was conducted. A comparison of experimental results with those calculated with the model confirmed their good agreement.
Czasopismo
Rocznik
Tom
Strony
47--70
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
- Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology Szczecin, 50a Piastów Ave., 70-311 Szczecin, Poland
autor
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology Szczecin, 19 Piastów Ave., 70-313 Szczecin, Poland
autor
- Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology Szczecin, 50a Piastów Ave., 70-311 Szczecin, Poland
Bibliografia
- [1] Wittbrodt E, Wojciech S. Forty-five years of the Rigid Finite Element Method. Arch Mech Eng. 2013;LX(3):313–8.
- [2] Wittbrodt E, Szczotka M, Maczyński A, Wojciech S. Rigid finite element method in analysis of dynamics of offshore structures. Berlin: Springer; 2013.
- [3] Wittbrodt E, Adamiec-Wójcik I, Wojciech S. Dynamics of flexible multibody systems. Rigid finite element method. Berlin Heidelberg: Springer; 2006.
- [4] Adamiec-Wójcik I, Drąg Ł, Wojciech S. A new approach to the rigid finite element method in modeling spatial slender systems. Int J Struct Stab Dyn. 2018;18:02.
- [5] Kruszewski J, et al. Metoda sztywnych elementów skończonych (in Polish). Warszawa: Arkady; 1975.
- [6] Kruszewski J, et al. Metoda sztywnych elementów skończonych w dynamice konstrukcji (in Polish). Warszawa: WNT; 1999.
- [7] Wahab AMM, De Roeck G. Damage detection in bridges using modal curvatures application to a real damage scenario. J Sound Vib. 1999;226:217–35.
- [8] Abozeid H. M., Fayed M. N., Mourad S. M., Khalil A. H. Damage detection of cable-stayed bridges using curvature changes in modal mode shapes. International Conference on Bridge Management System, Kair (2006), mat. konf.
- [9] Bąk R, Burczyński T. Wytrzymałość materiałów z elementami ujęcia komputerowego. Warszawa: WNT; 2001.
- [10] Dyląg Z., Jakubowicz A., Orłoś Z. Wytrzymałość materiałów. Tom 1. WNT, Warszawa 2003.
- [11] Kwaśniewski L. On practical problems with verification and validation of computational models. Arch Civ Eng. 2009;LV(3):323–46.
- [12] Csupor D. Methoden zur Berechnung der freien Schwingungen des Schiffs Körpers, Jahrbuch der STG, 50 Band 1956.
- [13] Timoshenko SP. On the transverse vibrations of bars of uniform cross-sections. Philos Magn. 1922;43:125–31.
- [14] Abramowicz M. Modelling of spatial vibration and parameter identification of discrete models for steel-concrete composite beams. Doctoral dissertation, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie (2014).
- [15] Wróblewski T. The use of the rigid finite element method to evaluate the dynamic characteristics of slab-and-beam structural systems. Szczecin: Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie; 2019.
- [16] Timoshenko S. Vibration problems in engineering. Toronto: D. Van Nostrand Co.; 1955.
- [17] Liew KM, Xiang Y, Kitipornchai S. Transverse vibration of thick rectangular plates – I. Comprehensive sets of boundary conditions. Comput Struct. 1993;49(1):1–29.
- [18] Abramowicz M, Berczyński S, Wróblewski T. Parameter estimation of a discrete model of a reinforced concrete slab. J Theor Appl Mech. 2017;55(2):407–20.
- [19] Olson MD, Hazell CR. Vibration studies on some integral rib-stiffened plates. J Sound Vib. 1977;50(1):43–61.
- [20] Wróblewski T. Ocena właściwości dynamicznych belek zespolonych. (in Polish), Doctoral disertation, Politechnika Szczecińska, 2006.
- [21] Berczyński S, Wróblewski T. Experimental verification of natural vibration models of steel-concrete composite beams. J Vib Con-trol. 2010;16(14):2057–81.
- [22] Ren W. X., Yu J. D., Shen J. Y. Structural damage identification using residual modal forces. MAC-XXI: conference and exposition on structural dynamics - innovative measurement technologies, Orlando, 2003.
- [23] Mrozek B, Mrozek Z. MATLAB i Simulink. Gliwice: Poradnik użytkownika. HELION; 2004.
- [24] Ostanin A. Metody optymalizacji z MATLAB. Ćwiczenia laboratoryjne. NAKOM, Poznań.
- [25] Pratap R. MATLAB 7 dla naukowców i inżynierów. Warszawa: PWN; 2007.
- [26] Mordini A, Wenzel H. Damage detection on beam structures by means of VCUPDATE. Electron J Struct Eng. 2010;10:11–21.
- [27] Marwala T. Finite-element-model updating using computational intelligence techniques. London: Springer; 2010.
- [28] Wróblewski T, Jarosińska M, Berczyński S. Application of ETR for diagnosis of damage in steel-concrete composite beams. J Theor Appl Mech. 2011;49(1):51–70.
- [29] Wróblewski T, Jarosińska M, Berczyński S. Damage location in steel-concrete composite beams using energy transfer ratio (ETR). J Theor Appl Mech. 2013;51(1):91–103.
- [30] Wróblewski T, Jarosińska M, Abramowicz M, Berczyński S. Experimental validation of the use of energy transfer ratio (ETR) for damage diagnosis of steel-concrete composite beams. J Theor Appl Mech. 2017;55(1):241–52.
- [31] Jarosińska M. Damage detection of steel-concrete composite beams with methods of modal analysis. Doctoral dissertation, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie 2014.
- [32] Liu K, De Roeck G. Damage detection of shear connectors in composite bridges. Struct Health Monit. 2009;8(5):345–56.
- [33] Pandey AK, Biswas M, Samman MM. Damage detection from changes in curvature mode shapes. J Sound Vib. 1991;145(2):321–32.
- [34] Teughels A, Maeck J, De Roeck G. Damage detection and param-eter identification by finite element model updating. Arch Comput Methods Eng. 2005;12:123–64.
- [35] Wollmann Ch. Estimation of the principle curvatures of approximated surfaces. Comput Aided Geometr Des. 2000;17:621–30.
- [36] Brasiliano A, Doz NG, de Brito VLJ. Damage identification in continuous beams and frame structures using the residual error method in the movement equation. Elsevier Nucl Eng Des. 2004;227:1–17.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a0d0113-3376-4931-a562-144b3b5894cd