Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In batch fermentation of whey, selection of suitable species at desired conditions such as substrate, product concentrations, temperature and inoculum size were investigated. Four Lactobacillus species and one Lactococcus species were screened for lactic acid production. Among them L. bulgaricus ATCC 11842 were selected for further studies. The optimal growth of the selected organism for variable size of inocula was examined. The results indicated that inoculum size had insignificant effect on the cell and lactic acid concentration. The effect of temperature was also studied at 32, 37, 42 and 47°C. Results showed that the concentration of cell dry weight increased with increment of temperature from 32 to 42°C. The maximum cell and lactic acid concentration was obtained at 42°C. The effect of initial substrate concentration on lactic acid production was also examined. The optimum initial lactose concentration was found to be 90 g/l.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
58--63
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- University of Mazandaran, Faculty of Chemical Engineering, Babolsar, Iran
autor
- University of Mazandaran, Faculty of Chemical Engineering, Babolsar, Iran
autor
- Babol Noshirvani University of Technology, Biotechnology Research Lab, Faculty of Chemical Engineering, Babol, Iran
Bibliografia
- 1. Najafpour, G., Hashemiyeh, B., Asadi, M. & Ghasemi, M. (2008). Biological treatment of dairy wastewater in an upflow anaerobic sludge-fixed film bioreactor. Am. Eurasian J. Agric. Environ. Sci. 4(2), 251–257.
- 2. Wee, Y., Kim, J. & Ryu, H. (2006). Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44(2), 163.
- 3. Tango, M. & Ghaly, A. (2002). A continuous lactic acid production system using an immobilized packed bed of Lactobacillus helveticus. Appl. Microbiol. Biotechnol. 58(6), 712–720, DOI: 10.1007/s00253-002-0970-3.
- 4. Vodnar, D.C., Venus, J., Schneider, R. & Socaciu, C. (2010). Lactic acid production by Lactobacillus paracasei 168 in discontinuous fermentation using lucerne green juice as nutrient substitute. Chem. Eng. Technol. 33(3), 468–474. DOI: 10.1002/ceat.200900463.
- 5. John, R.P., Nampoothiri, K.M. & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl. Microbiol. Biotechnol. 74(3), 524–534. DOI:10.1007/s00253-006-0779-6.
- 6. Abdel-Rahman, M.A., Tashiro, Y. & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31(6), 877-902. DOI: 10.1016/j.biotechadv.2013.04.002 7.
- 7. Panesar P.S., Kennedy J.F., Gandhi D.N. & Bunko K. (2007). Bioutilisation of whey for lactic acid production. Food Chem. 105(1), 1–14. DOI: 10.1016/j.foodchem.2007.03.035.
- 8. Fakhravar, S., Najafpour, G., Heris, S.Z., Izadi, M. & Fakhravar, A. (2012). Fermentative Lactic Acid from Deproteinized Whey Using Lactobacillus bulgaricus in Batch Culture. World Appl. Sci. J. 17(9), 1083–1086.
- 9. Hofvendahl, K. & Hahn–Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26(2), 87–107. DOI: 10.1016/S0141-0229(99)00155-6.
- 10. Guo, Y., Yan, Q., Jiang, Z., Teng, C. & Wang, X. (2010). Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. J. Ind. Microbiol. Biotechnol. 37(11), 1137–1143. DOI: 10.1007/s10295-010-0761-2 .
- 11. Pagana, I., Morawicki, R. & Hager, T.J. (2014). Lactic acid production using waste generated from sweet potato processing. Int. J. Food Sci. Tech. 49(2), 641–649. DOI: 10.1111/ijfs.12347.
- 12. Saito, K., Hasa, Y. & Abe, H. (2012). Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. J. Biosci. Bioeng. 114(2), 166–169. DOI: 10.1016/j.jbiosc.2012.03.007.
- 13. Tay, A. & Yang, S.T. (2002). Production of L (+) lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Biotechnol. Bioeng. 80(1), 1–12. DOI: 10.1002/bit.10340.
- 14. Yen, H.,W. & Kang, J.L. (2010). Lactic acid production directly from starch in a starch-controlled fed-batch operation using Lactobacillus amylophilus. Bioprocess Biosystems Eng. 33(9), 1017–1023. DOI: 10.1007/s00449-010-0426-6.
- 15. Fu, W. & Mathews, A.P. (1999). Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and 33(9), 1017–1023. DOI: 10.1007/s00449-010-0426-6. effects of pH, substrate, and oxygen. Biochem. Eng. J. 3(3), 163–170. DOI: 10.1016/S1369-703X(99)00014-5.
- 16. Khiralla, G., Rasmy, N., El-Malky, W. & Ibrahim, M. (2009). The role of fermented soymilk with potential probiotic properties in the treatment of diarrhea in young rats. Pak. J. Biotech. 6(1/2), 89–100.
- 17. Korbekandi, H., Abedi, D., Jalali, M., Fazeli, M.R. & Heidari, M. (2007). Optimization of Lactobacillus casei growth and lactic acid production in batch culture. J. Biotechnol. 131(2 Suppl.), 182–183. DOI: 10.1016/j.jbiotec.2007.07.923.
- 18. Kim, D.H., Lim, W.T., Lee, M.K. & Kim, M.S. (2012). Effect of temperature on continuous fermentative lactic acid (LA) production and bacterial community, and development of LA-producing UASB reactor. Bioresour. Technol. 119, 355–361. DOI: 10.1016/j.biortech.2012.05.027.
- 19. Tango, M. & Ghaly, A. (1999). Effect of temperature on lactic acid production from cheese whey using Lactobacillus helveticus under batch conditions. Biomass Bioenergy. 16(1), 61–78. DOI: 10.1016/S0961-9534(98)00062-2.
- 20. Najafpour, G. (2006). Biochemical engineering and biotechnology. Elsevier.
- 21. Liu, B., Yang, M., Qi, B., Chen, X., Su, Z. & Wan, Y. (2010). Optimizing l-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method. Biochem. Eng. J. 52(2–3), 212–219. DOI: 10.1016/j.bej.2010.08.013.
- 22. Hujanen, M. & Linko, Y.Y. (1996). Effect of temperature and various nitrogen sources on L (+)-lactic acid production by Lactobacillus casei. Appl. Microbiol. Biotechnol. 45(3), 307–313. DOI: 10.1007/s002530050688 23.
- 23. Clark, D.S. & Blanch, H.W. (1997). Biochemical engineering. New York: CRC Press.
- 24. Taylor, J. (2001). Microorganisms and Biotechnology. United Kingdom: Nelson Thornes.
- 25. Hofvendahl, K. & Hagerdal, B.H. (1997). L. Lactic Acid Production from Whole Wheat Flour Hydrolysate Using Strain of Lactobacilli and Lactococci. Enzyme Microbiol. Technol. 20(3), 303–307. DOI: 10.1016/S0141-0229(99)00155-6.
- 26. Audet, P., Paquin, C. & Lacroix, C. (1989). Sugar utilization and acid production by free and entrapped cells of Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactococcus lactis subsp. lactis in a whey permeate medium. Appl. Environ. Microbiol. 55(1), 185–189.
- 27. Samuel, W.A., Lee, Y. & Anthony, W. (1980). Lactic acid fermentation of crude sorghum extract. Biotechnol. Bioeng. 22(4), 757–777. DOI: 10.1002/bit.260220404.
- 28. Mozzi, F., Oliver, G., de Giori, G.S. & de Valdez, G.F. (1995). Influence of temperature on the production of exopolysaccharides by thermophilic lactic acid bacteria. Milchwissenschaft 50(2), 80–82.
- 29. Büyükkileci, A.O. & Harsa, S. (2004). Batch production of L (+) lactic acid from whey by Lactobacillus casei (NRRL B–441). J. Chem. Technol. Biotechnol. 79(9), 1036–1040. DOI: 10.1002/jctb.1094.
- 30. Chiarini, L., Mara, L. & Tabacchioni, S. (1992). Influence of growth supplements on lactic acid production in whey ultrafiltrate by Lactobacillus helveticus. Appl. Microbiol. Biotechnol. 36(4), 461–464.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9a0878ce-6293-4e26-872a-16f3e123351c