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Abstract: We show that a unimodal failure rate function can
be obtained as a mixture of two increasing failure rate functions.
Specifically, we study the failure rate of the mixture of an exponential
distribution and an IFR (increasing failure rate) distribution with
increasing quadratic failure rate function. At the end of the paper
we show a numerical example of the modified unimodal failure rate
function.
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1. Introduction

The distributions with non-monotone failure rate function are being considered
in the theory and practice of reliability. The distributions with the bathtub and
the upside-down bathtub shaped failure functions belong among such distribu-
tions. In reliability theory, the models with a bathtub shape failure function
are very useful. There are many known applications of failure rate functions
with the upside-down bathtub shape. For example, in the papers by Jiang and
Murthy (1998), Mudholkar, Sirvastava and Trimer (1995), and Xie, Tang and
Goh (2002) the failure rate functions of this shape are used. One method of
generating a distribution with non-monotone failure rate function is the mixing
of standard distributions (see the review by Lai and Xie, 2005). There is a
well-known result showing that a mixture of distributions with decreasing fail-
ure rate functions (DFR) has a decreasing failure rate function (see Barlow,
Marshall and Prochan, 1963). Gurland and Sethurman (1995) have given a
condition under which a mixture of an exponential and an IFR distributions is
a DFR distribution. In this paper, we divide the set of shapes of failure rate
functions into the following six categories:
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(a) monotonic failure rate if it is either increasing (IFR) or decreasing (DFR);

(b) bathtub type failure rate if λ(t) is of bathtub shape (BT);

(c) modified bathtub failure rate if λ(t) is increasing and then bathtub (MBT);

(d) upside-down bathtub (UBT) shape or unimodal shape;

(e) modified upside-down bathtub if λ(t) is first decreasing and then upside-
down bathtub (MBUT);

(f) roller coaster (decreasing, increasing, decreasing and increasing or incre-
asing, decreasing, increasing and decreasing).

Klutke, Kiessler and Wortman (2003) studied the mixture of Weibull and
exponential distributions, and suggested that the mixture can be a distribution
with unimodal shape failure rate function. However, Wondmagegnehu, Navarro
and Hernandez (2005) showed that this failure rate function has a decreasing
initial period. It is shown in the above-cited work that the failure rate func-
tion of the mixture of exponential and Weibull distributions takes one of three
shapes: UBT, MUBT and roller-coaster (in this case increasing, decreasing and
increasing). Jiang and Murthy (1998) categorized the possible shapes of the
failure rate function for a mixture of any two Weibull distributions in terms of
five parameters. The failure rate can be shaped as eight different types, includ-
ing IFR, DFR, MBT, UTB and roller-coaster. It is shown by many authors
(see, for instance, Jiang and Xiao, 2003, or Wondmagegnehu, 2004) that this
mixture distribution cannot have a BT failure rate. They also stated that the
mixture of the failure rates from two strictly IFR Weibull distributions with the
same shape parameter can be either MTB or IFR.

Wondmagegnehu (2004) developed over the work of Jiang and Murthy (1998)
and assumed the two Weibull distributions involved to be strictly IFR. He also
used several examples to illustrate the possible shapes that the mixture failure
rate can take on when the two Weibull distributions have different shapes and
scale parameters. In Gupta and Warren (2001) the shape of the failure rate
function of the mixture of two gamma distributions was studied. In this case,
the possible shapes are IFR, DFR, BT and MBT.

Block, Savits and Wondmagegnehu (2003) gave explicit conditions, which
delineate the possible shapes of the failure rate function for the mixture of two
IFR linear distributions. Let the two increasing linear failure rates be given by,
respectively,

λ1(t) = c1t+ d1, and λ2(t) = c1t+ d2,

where c1 ≥ c2 > 0 and d1,d2 ≥ 0. The failure rate shape can be of three
different types: IFR, BT and MTB. This mixture depends on five parameters:
c1, c2, d1, d2, and the mixing parameter p. In this paper we derive a mixture
of exponential, λ1(t) = λ, and increasing quadratic, λ2(t) = at2+ bt +c, where
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a ¿ 0, b ≥ 0, c ≥ 0, failure rate functions. This mixture depends also on five
parameters: a, b, c, λ and p. The failure rate shape can be of three different
types: DFR, UBT and MUTB.

2. The model

We consider a mixture, involving lifetimes T1 and T2, with the densities f1(t)
and f2(t), the reliability functions R1(t) and R2(t), the failure rate functions
λ1(t), λ2(t), and weights p and q = 1 – p, where 0 < p < 1. The mixed density
function is then written as:

f(t) = pf1(t) + (1− p)f2(t),

and the reliability function is:

R(t) = pR1(t) + (1− p)R2(t).

The failure rate function of the mixture can be written as the following
mixture:

λ(t) = w(t)λ1(t) + (1 − w(t))λ2(t),

where w(t) = pR1(t)/R(t).

Proposition 1 For the first derivative of w(t), we have:

w′(t) = w(t)(1 − w(t))(λ2(t)− λ1(t)).

Proposition 2 The first derivative of λ(t) is:

λ′(t) = (1 − w(t))((1 − w(t)(λ2(t)− λ1(t))
2 + λ′

2(t)) + w(t)λ′

1(t)).

Proposition 3 If λ1(t) = λ then

λ′(t) = (1 − w(t))((1 − w(t)(λ2(t)− λ)2 + λ′

2(t)).

3. Mixture of an exponential distribution and a distribu-

tion with increasing quadratic failure rate function

Let

λ1(t) = λ, λ2(t) = at2 + bt+ c, g1(t) = w(t)(at2 + bt+ c− λ)2, g2(t) = 2at+ b,

where a > 0, b ≥ 0, c ≥ 0.

The equation λ′(t) = 0 is equivalent to the equation:

g1(t) = g2(t). (1)
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For the ratio u(t) = g1(t) / g2(t), we have:

lim
t→∞

u(t) = ∞. (2)

If c < λ, then there is t0 such that g2(t0) = 0. For the first derivative of

u1(t) = (λ2(t)− λ)2/g1(t),

we calculate:

u′(t) =
2(at2 + bt+ c− λ)

(2at+ b)2
{3a2t2 + 3abt+ b2 − a(c− λ)}. (3)

We will now consider three cases:

Case A: c ≤ λ.
If c = λ, then u(t) = u1(t)w(t), increasing from u(0) = 0 to u(∞) = ∞, and

the equation u(t) = 1 has exactly one solution. In this case, λ(t) is UBT.
If c < λ, the function g1(t) is an increasing function, and g2(t) is decreasing

on the interval (0, t0). If p (c − λ)2 ≤ b, then equation (1) has no solution on
(0, t0). If p(c− λ)2 > b, then equation (1) has exactly one solution on (0, t0).

If c ¡ λ, then, by (3), u’1(t) ¿ 0 on (t0, ∞). By Proposition 1, the function
w(t) is increasing. The functions u1(t) and w(t) are continuous and increasing
on (t0, ∞). The equation u(t) = 1 has exactly one solution.

If p(c−λ)2 ≤ b, then the failure rate function λ(t) is UBT. If p(c− λ)2 > b,
then λ(t) assumes one minimum and one maximum (MUBT).

Corollary 1 If c ≤ λ, then λ(t) is UBT or MUBT.

Case B: c > λ, b2 − a(c− λ) ≥ 0.

By (3) and Proposition 1, the function u(t) = u1(t)w(t) increases from u(0)
= p(c – λ)2/ b to u(∞) = ∞.

If p(c – λ)2/ b ¡ 1, then λ(t) is UBT, and if p(c – λ)2 / b ≥ 1, then λ(t) is
DFR.

Corollary 2 If c > λ and b2 − a(c− λ) ≥ 0 then λ(t) is DFR or UBT.

Case C: c > λ, b2 − a(c− λ) < 0.

By (3) we conclude that there is t1 such that t1 > 0 and u′

1(t1) = 0. The
function w(t) is increasing for t ∈ (0,∞), this being the consequence of the fact
that c−λ > 0. Since u(t) = u1(t)w(t), this function is increasing for t ∈ (t1,∞).
From the above, and from the fact that u(0) = p(c – λ)2 /b, we have the thesis
of the next corollary:

Corollary 3 If c > λ, b2−a(c−λ) < 0 and p(c−λ)2/b ≤ 1, then the equation
u(t) = 1 for t > t1 has exactly one solution.
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We calculate the first derivative u′(t):

u′(t) =
w(t)(at2 + bt+ c− λ)

(2at+ b)2
{z1(t) + z2(t)}

where
z1(t) = (1 – w(t)) (at2+ bt +c – λ)2 (2at +b),
z2(t) = 2(3a2t2+ 3abt +b2 – a (c – λ)).

For the function z(t) = z1(t) + z2(t) we calculate:

z(0) = (1− p)(c− λ)2b+ 2(b2 − a(c− λ).

The sign of the term z(0) can be “ + ” or “ – “. The first derivative z’1(t)
can by written down as:

z′1(t) = (1− w(t))(at2 + bt+ c− λ)((−w(t)(at2 + bt+ c− λ)2(2at+ b) +

+2(2at+ b)2 + 2a(at2 + bt+ c− λ)2).

The inequality z1’(t) ¿ 0 holds if and only if
w(t) < 2(2at+ b)/(at2 + bt+ c− λ)2 + 2a/((at2 + bt+ c− λ)(2at + b)).

The last inequality is equivalent to

u(t) < 2 + 2a(at2 + bt+ c− λ)/(2at+ b)2.

The function w(t) is increasing for t > 0 and u1’(t) > 0 for t > t1, there-
fore u(t) is increasing for t > t1. We can see that if u(t) < 2, then z(t) is
increasing on (0, t1). The function z2(t) is increasing and changes the sign from
“ – “ to “ + ” at the point t1. If z(0) ≥ 0, then the function u(t) is increasing,
and λ(t) is UBT or increasing (DFR). If z(0) < 0, then z(t) changes the sign
from “ – ” to “ + “, since u(t) assumes a minimum at a point t2 ≤ t1. In this
case, the function u(t) has exactly one minimum, and if p(c − λ)2 /b > 1, then
λ(t) is DFR or MUBT. By this and Corollary 3, we have:

Corollary 4 If c > λ, b2−a(c−λ) < 0, then λ(t) is DFR or UBT or MUBT.

Summing up the above, we can formulate the following theorem:

Theorem 1 We assume that λ1(t) = λ and λ2(t) = at2 + bt + c, where a >
0, b ≥ 0, c ≥ 0. The shape of the failure rate function of the mixture of an
exponential distribution with parameter λ and a distribution with failure rate
function λ2(t) can be as follows:

if c ≤ λ then λ (t) is UBT or MUBT,
if c > λand b2 − a(c− λ) ≥ 0 thenλ(t) is DFR or UBT,
if c > λand b2 − a(c− λ) < 0 thenλ(t) is UBT or MUBT.
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4. Numerical example

In this example, we assume that the mixing parameter p ∈{0.5, 0.6, 0.7}, and
the other parameters are: a = 2, b = 0.1, c = 2, λ = 1. We have:

c− λ > 0, b2 − a(c− λ) < 0, and p(c− λ)2/b > 1

and we will consider the case C, when λ(t) has one minimum and one maximum.
The shape of the failure rate function of the mixture is MUBT. The respective
illustration is provided in Fig. 1.

Figure 1. The failure rate function of the mixture of an exponential distribution
and a distribution with increasing quadratic failure rate function (case C)

5. Conclusion

The paper considers a lifetime model with a simple failure rate function. The
failure rate function has three shapes. In this paper, it is shown that the distri-
bution of lifetime with the unimodal failure rate can be obtained from a mixture
of an exponential distribution and a distribution with a (IFR) quadratic failure
rate function.
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