PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hyperpolarized 13C tracers offer a radiation-free option for metabolic imaging. Signal enhancement of an order of several thousand times with the dynamic nuclear polarization (DNP) technique allows the detection of these tracers and their immediate metabolites in living organisms with MRI/MRSI (magnetic resonance imaging/magnetic resonance spectroscopy imaging) methods in real time and with high temporal resolution. The initial ‘target’ application for DNP hyperpolarized tracers was prostate cancer, a condition that could hardly be diagnosed with the FDG PET. However, several Phase 2 clinical trials currently involve not only patients with prostate cancer but also pancreatic cancer, amyotrophic lateral sclerosis, transient ischemic attack, glioblastoma multiforme, mycosis fungiodes (skin cancer), and chronic heart failure. A large number of trials that started in the last three years indicate that there could be a potential for the application of hyperpolarized 13C labeled pyruvate in the diagnosis of several conditions other than prostate cancer. One limitation for the hyperpolarized 13C-labelled tracers is their relatively short half-life. In this review, we discuss several emerging strategies for increasing tracer’s lifetime that could allow either their transportation between facilities or improve the signal-to-noise ratio in the final acquisition. We also discuss some promising diagnostic applications.
Twórcy
  • Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland; Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland; Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland; Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland; Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
  • Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland; Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
  • Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
  • Small Animal Magnetic Resonance Imaging Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland; Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland; Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] Hoult DI, Richards RE. The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson (1969) 1976;24:71–85.
  • [2] Nikolaou P, Goodson BM, Chekmenev EY. NMR hyperpolarization techniques for biomedicine. Chem – Eur J 2015;21:3156–66.
  • [3] Marco-Rius I, Tayler MCD, Kettunen MI, Larkin TJ, Timm KN, Serrao EM, et al. Hyperpolarized singlet lifetimes of pyruvate in human blood and in the mouse. NMR Biomed 2013;26:1696–704.
  • [4] Nonaka H, Hirano M, Imakura Y, Takakusagi Y, Ichikawa K, Sando S. Design of a 15N molecular unit to achieve long retention of hyperpolarized spin state. Sci Rep 2017;7:40104.
  • [5] Hashi K, Goto A, Shimizu T, Iijima T, Ohki S. High field NMR up to 23.5T with a resistive magnet. Physica B 2004;346–347:531–3.
  • [6] Hirsch ML, Kalechofsky N, Belzer A, Rosay M, Kempf JG. Brute-force hyperpolarization for NMR and MRI. J Am Chem Soc 2015;137:8428–34.
  • [7] Günther UL. Dynamic nuclear hyperpolarization in liquids. Top Curr Chem 2013;335:23–69.
  • [8] Mok KH, Hore PJ. Photo-CIDNP NMR methods for studying protein folding. Methods 2004;34:75–87.
  • [9] Nitschke P, Lokesh N, Gschwind RM. Combination of illumination and high resolution NMR spectroscopy: key features and practical aspects, photochemical applications, and new concepts. Prog Nucl Magn Reson Spectrosc 2019;114–115:86–134.
  • [10] Eisenschmid TC, Kirss RU, Deutsch PP, Hommeltoft SI, Eisenberg R, Bargon J, et al. Para hydrogen induced polarization in hydrogenation reactions. J Am Chem Soc 1987;109:8089–91.
  • [11] Hövener J-B, Pravdivtsev AN, Kidd B, Bowers CR, Glöggler S, Kovtunov KV, et al. Parahydrogen-based hyperpolarization for biomedicine. Angew Chem Int Ed 2018;57:11140–62.
  • [12] Emondts M, Colell JFP, Blümich B, Schleker PPM. Polarization transfer efficiency in PHIP experiments. PCCP 2017;19:21933–7.
  • [13] Reineri F, Boi T, Aime S. ParaHydrogen induced polarization of 13C carboxylate resonance in acetate and pyruvate. Nat Commun 2015;6:5858.
  • [14] Kastler A. Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique. J Phys Radium 1950;11:255–65.
  • [15] Colegrove FD, Schearer LD, Walters GK. Polarization of He3 gas by optical pumping. Phys Rev 1963;132:2561–72.
  • [16] Walters GK, Colegrove FD, Schearer LD. Nuclear polarization of He3 gas by metastability exchange with optically pumped metastable He3 atoms. Phys Rev Lett 1962;8:439–42.
  • [17] Gentile TR, Nacher PJ, Saam B, Walker TG. Optically polarized (3)He. Rev Mod Phys 2017;89.
  • [18] Bouchiat MA, Carver TR, Varnum CM. Nuclear polarization in He3 gas induced by optical pumping and dipolar exchange. Phys Rev Lett 1960;5:373–5.
  • [19] Dohnalik T, Głowacz B, Olejniczak Z, Pałasz T, Suchanek M, Wojna A. Spectroscopic issues in optical polarization of 3He gas for Magnetic Resonance Imaging of human lungs. Eur Phys J Special Topics 2013;222:2103–18.
  • [20] Maunder A, Hughes PJC, Norquay G, Robb F, Rao M, Wild J. Comparison of inhaled 19F C3F8 and hyperpolarized 129Xe lung ventilation MRI. Eur Respir J 2018;52 OA5177.
  • [21] Mugler 3rd JP, Altes TA. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging: JMRI 2013;37:313–31.
  • [22] Möller HE, Chen XJ, Saam B, Hagspiel KD, Johnson GA, Altes TA, et al. MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 2002;47:1029–51.
  • [23] Armstrong BD, Han S. Overhauser dynamic nuclear polarization to study local water dynamics. J Am Chem Soc 2009;131:4641–7.
  • [24] Jeffries CD. Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys Rev 1957;106:164–5.
  • [25] Hwang CF, Hill DA. Phenomenological model for the new effect in dynamic polarization. Phys Rev Lett 1967;19:1011–4.
  • [26] Goertz ST. The dynamic nuclear polarization process. Nucl Instrum Methods Phys Res, Sect A 2004;526:28–42.
  • [27] Nardi-Schreiber A, Gamliel A, Harris T, Sapir G, Sosna J, Gomori JM, et al. Biochemical phosphates observed using hyperpolarized (31)P in physiological aqueous solutions. Nat Commun 2017;8:341.
  • [28] Ardenkjaer-Larsen JH. On the present and future of dissolution-DNP. J Magn Reson 2016;264:3–12.
  • [29] Harris T, Gamliel A, Uppala S, Nardi-Schreiber A, Sosna J, Gomori JM, et al. Long-lived 15N hyperpolarization and rapid relaxation as a potential basis for repeated first pass perfusion imaging – marked effects of deuteration and temperature. ChemPhysChem 2018;19:2148–52.
  • [30] Gamliel A, Uppala S, Sapir G, Harris T, Nardi-Schreiber A, Shaul D, et al. Hyperpolarized [15N]nitrate as a potential long lived hyperpolarized contrast agent for MRI. J Magn Reson 2019;299:188–95.
  • [31] Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci 2003;100:10158–63.
  • [32] Nelson SJ, Vigneron D, Kurhanewicz J, Chen A, Bok R, Hurd R. DNP-hyperpolarized 13C magnetic resonance metabolic imaging for cancer applications. Appl Magn Reson 2008;34:533–44.
  • [33] Cunningham CH, Lau JY, Chen AP, Geraghty BJ, Perks WJ, Roifman I, et al. Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res 2016;119:1177–82.
  • [34] Kouřil K, Kouřilová H, Bartram S, Levitt MH, Meier B. Scalable dissolution-dynamic nuclear polarization with rapid transfer of a polarized solid. Nat Commun 2019;10:1733.
  • [35] Anon. Hyperpolarized Pyruvate (13C) Injection. Investigator’s Brochure. 2020.
  • [36] Skloss TW, Murray JA, Ardenkjær-Larsen JH, Cherukuri MKC, Bernardo M, Devasahayam N. Hyperpolarized media transport vessel. 2015.
  • [37] Milani J, Vuichoud B, Bornet A, Melzi R, Jannin S, Bodenhausen G. Hyperpolarization of nitrogen-15 nuclei by cross polarization and dissolution dynamic nuclear polarization. Rev Sci Instrum 2017;88 015109.
  • [38] Pileio G, Hill-Cousins JT, Mitchell S, Kuprov I, Brown LJ, Brown RCD, et al. Long-lived nuclear singlet order in near-equivalent 13C spin pairs. J Am Chem Soc 2012;134:17494–7.
  • [39] Pileio G, Bowen S, Laustsen C, Tayler MCD, Hill-Cousins JT, Brown LJ, et al. Recycling and imaging of nuclear singlet hyperpolarization. J Am Chem Soc 2013;135:5084–8.
  • [40] Miéville P, Jannin S, Bodenhausen G. Relaxometry of insensitive nuclei: optimizing dissolution dynamic nuclear polarization. J Magn Reson 2011;210:137–40.
  • [41] Capozzi A, Cheng T, Boero G, Roussel C, Comment A. Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates. Nat Commun 2017;8:15757.
  • [42] Milani J, Vuichoud B, Bornet A, Miéville P, Mottier R, Jannin S, et al. A magnetic tunnel to shelter hyperpolarized fluids. Rev Sci Instrum 2015;86 024101.
  • [43] Laustsen C, Pileio G, Tayler MCD, Brown LJ, Brown RCD, Levitt MH, et al. Hyperpolarized singlet NMR on a small animal imaging system. Magn Reson Med 2012;68:1262–5.
  • [44] Tayler MCD, Levitt MH. Singlet nuclear magnetic resonance of nearly-equivalent spins. PCCP 2011;13:5556–60.
  • [45] Hirsch ML, Smith BA, Mattingly M, Goloshevsky AG, Rosay M, Kempf JG. Transport and imaging of brute-force 13C hyperpolarization. J Magn Reson 2015;261:87–94.
  • [46] Ji X, Bornet A, Vuichoud B, Milani J, Gajan D, Rossini AJ, et al. Transportable hyperpolarized metabolites. Nat Commun 2017;8:13975.
  • [47] Golman K, in ’t Zandt R, Thaning M. Real-time metabolic imaging. Proc Natl Acad Sci USA 2006;103:11270–5.
  • [48] Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 2019;95:912–9.
  • [49] Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat 2018;38:1–11.
  • [50] Singh J, Suh EH, Sharma G, Khemtong C, Sherry AD, Kovacs Z. Probing carbohydrate metabolism using hyperpolarized 13C-labeled molecules. NMR Biomed 2019;32 e4018.
  • [51] Kohler SJ, Yen Y, Wolber J, Chen AP, Albers MJ, Bok R, et al. In vivo 13 carbon metabolic imaging at 3Twith hyperpolarized 13C-1-pyruvate. Magn Reson Med 2007;58:65–9.
  • [52] Khemtong C, Carpenter NR, Lumata LL, Merritt ME, Moreno KX, Kovacs Z, et al. Hyperpolarized 13C NMR detects rapid drug-induced changes in cardiac metabolism. Magn Reson Med 2015;74:312–9.
  • [53] Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-(1)(3)C]pyruvate. Sci Transl Med 2013;5 198ra08.
  • [54] Rodrigues TB, Serrao EM, Kennedy BW, Hu DE, Kettunen MI, Brindle KM. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 2014;20:93–7.
  • [55] Saito K, Matsumoto S, Takakusagi Y, Matsuo M, Morris HD, Lizak MJ, et al. 13C-MR spectroscopic imaging with hyperpolarized [1-13C]pyruvate detects early response to radiotherapy in SCC tumors and HT-29 tumors. Clin Cancer Res 2015;21:5073–81.
  • [56] Sogaard LV, Schilling F, Janich MA, Menzel MI, Ardenkjaer-Larsen JH. In vivo measurement of apparent diffusion coefficients of hyperpolarized (1)(3)C-labeled metabolites. NMR Biomed 2014;27:561–9.
  • [57] Wilson DM, Kurhanewicz J. Hyperpolarized 13C MR for molecular imaging of prostate cancer. J Nucl Med 2014;55:1567–72.
  • [58] Park JM, Josan S, Jang T, Merchant M, Yen YF, Hurd RE, et al. Metabolite kinetics in C6 rat glioma model using magnetic resonance spectroscopic imaging of hyperpolarized [1-(13)C]pyruvate. Magn Reson Med 2012;68:1886–93.
  • [59] Pullinger B, Profka H, Ardenkjaer-Larsen JH, Kuzma NN, Kadlecek S, Rizi RR. Metabolism of hyperpolarized [1-(1)(3)C]pyruvate in the isolated perfused rat lung - an ischemia study. NMR Biomed 2012;25:1113–8.
  • [60] Bohndiek SE, Kettunen MI, Hu DE, Brindle KM. Hyperpolarized (13)C spectroscopy detects early changes in tumor vasculature and metabolism after VEGF neutralization. Cancer Res 2012;72:854–64.
  • [61] Gallagher FA, Kettunen MI, Brindle KM. Imaging pH with hyperpolarized 13C. NMR Biomed 2011;24:1006–15.
  • [62] von Morze C, Larson PE, Hu S, Keshari K, Wilson DM, Ardenkjaer-Larsen JH, et al. Imaging of blood flow using hyperpolarized [(13)C]urea in preclinical cancer models. J Magn Reson Imaging 2011;33:692–7.
  • [63] Fuetterer M, Busch J, Peereboom SM, von Deuster C, Wissmann L, Lipiski M, et al. Hyperpolarized (13)C urea myocardial first-pass perfusion imaging using velocity-selective excitation. J Cardiovasc Magn Reson 2017;19:46.
  • [64] Keshari KR, Wilson DM, Chen AP, Bok R, Larson PE, Hu S, et al. Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J Am Chem Soc 2009;131:17591–6.
  • [65] von Morze C, Larson PE, Hu S, Yoshihara HA, Bok RA, Goga A, et al. Investigating tumor perfusion and metabolism using multiple hyperpolarized (13)C compounds: HP001, pyruvate and urea. Magn Reson Imaging 2012;30:305–11.
  • [66] Huang MT, Veech RL. Metabolic fluxes between [14C]2-deoxy-D-glucose and [14C]2-deoxy-D-glucose-6-phosphate in brain in vivo. J Neurochem 1985;44:567–73.
  • [67] Allouche-Arnon H, Wade T, Waldner LF, Miller VN, Gomori JM, Katz-Brull R, et al. In vivo magnetic resonance imaging of glucose - initial experience. Contrast Media Mol Imaging 2013;8:72–82.
  • [68] Mishkovsky M, Anderson B, Karlsson M, Lerche MH, Sherry AD, Gruetter R, et al. Measuring glucose cerebral metabolism in the healthy mouse using hyperpolarized 13C magnetic resonance. Sci Rep 2017;7:11719.
  • [69] Sapir G, Harris T, Uppala S, Nardi-Schreiber A, Sosna J, Gomori JM, et al. [13C6, D8]2-deoxyglucose phosphorylation by hexokinase shows selectivity for the b-anomer. Sci Rep 2019;9:19683.
  • [70] Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, et al. Hyperpolarized (13)C MRI: path to clinical translation in oncology. Neoplasia 2019;21:1–16.
  • [71] Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M, et al. Metabolic imaging of patients with prostate cancer using hyperpolarized [1->13>C]pyruvate. Sci Transl Med 2013;5. 198ra08-ra08.
  • [72] Rider OJ, Apps A, Miller JJJJ, Lau JYC, Lewis AJM, Peterzan MA, et al. Noninvasive in vivo assessment of cardiac metabolism in the healthy and diabetic human heart using hyperpolarized >13>C MRI. Circ Res 2020;126:725–36.
  • [73] Grist JT, McLean MA, Riemer F, Schulte RF, Deen SS, Zaccagna F, et al. Quantifying normal human brain metabolism using hyperpolarized [1–13C]pyruvate and magnetic resonance imaging. NeuroImage 2019;189:171–9.
  • [74] Gallagher FA, Woitek R, McLean MA, Gill AB, Manzano Garcia R, Provenzano E, et al. Imaging breast cancer using hyperpolarized carbon-13 MRI. Proc Natl Acad Sci 2020;117:2092–8.
  • [75] Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, et al. Hyperpolarized 13C MRI: path to clinical translation in oncology. Neoplasia 2019;21:1–16.
  • [76] Wang ZJ, Ohliger MA, Larson PEZ, Gordon JW, Bok RA, Slater J, et al. Hyperpolarized 13C MRI: state of the art and future directions. Radiology 2019;291:273–84.
  • [77] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.
  • [78] Granlund KL, Tee SS, Vargas HA, Lyashchenko SK, Reznik E, Fine S, et al. Hyperpolarized MRI of human prostate cancer reveals increased lactate with tumor grade driven by monocarboxylate transporter 1. Cell Metab 2020;31. 105-14.e3.
  • [79] Moussa AS, Meshref A, Schoenfield L, Masoud A, Abdel-Rahman S, Li J, et al. Importance of additional ‘‘extreme” anterior apical needle biopsies in the initial detection of prostate cancer. Urology 2010;75:1034–9.
  • [80] Wright JL, Ellis WJ. Improved prostate cancer detection with anterior apical prostate biopsies. Urol Oncol 2006;24:492–5.
  • [81] Kitajima K, Yamamoto S, Fukushima K, Minamimoto R, Kamai T, Jadvar H. Update on advances in molecular PET in urological oncology. Jpn J Radiol 2016;34:470–85.
  • [82] Marzouk K, Ehdaie B. New imaging techniques in prostate cancer. Cancer Treat Res 2018;175:1–13.
  • [83] Chen HY, Larson PEZ, Bok RA, von Morze C, Sriram R, Delos Santos R, et al. Assessing prostate cancer aggressiveness with hyperpolarized dual-agent 3D dynamic imaging of metabolism and perfusion. Cancer Res 2017;77:3207–16.
  • [84] Chen HY, Aggarwal R, Bok RA, Ohliger MA, Zhu Z, Lee P, et al. Hyperpolarized (13)C-pyruvate MRI detects real-time metabolic flux in prostate cancer metastases to bone and liver: a clinical feasibility study. Prostate Cancer Prostatic Dis 2020;23:269–76.
  • [85] Aggarwal R, Vigneron DB, Kurhanewicz J. Hyperpolarized 1-[(13)C]-pyruvate magnetic resonance imaging detects an early metabolic response to androgen ablation therapy in prostate cancer. Eur Urol 2017;72:1028–9.
  • [86] Qin H, Zhang V, Bok RA, Santos RD, Cunha JA, Hsu IC, et al. Simultaneous metabolic and perfusion imaging using hyperpolarized (13)C MRI can evaluate early and dose-dependent response to radiation therapy in a prostate cancer mouse model. Int J Radiat Oncol Biol Phys 2020;107:887–96.
  • [87] Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Med Press) 2019;11:151–64.
  • [88] Harris T, Degani H, Frydman L. Hyperpolarized 13C NMR studies of glucose metabolism in living breast cancer cell cultures. NMR Biomed 2013;26:1831–43.
  • [89] Lodi A, Woods SM, Ronen SM. Treatment with the MEK inhibitor U0126 induces decreased hyperpolarized pyruvate to lactate conversion in breast, but not prostate, cancer cells. NMR Biomed 2013;26:299–306.
  • [90] Harris T, Eliyahu G, Frydman L, Degani H. Kinetics of hyperpolarized 13C1-pyruvate transport and metabolism in living human breast cancer cells. Proc Natl Acad Sci USA 2009;106:18131–6.
  • [91] Tezcan S, Ulu Ozturk F, Uslu N, Yilmaz Akcay E. The role of combined diffusion-weighted imaging and dynamic contrast-enhanced MRI for differentiating malignant from benign breast lesions presenting washout curve. Can Assoc Radiol J 2020. 846537120907098.
  • [92] Rahbar H, Partridge SC. Multiparametric MR imaging of breast cancer. Magn Reson Imaging Clin N Am 2016;24:223–38.
  • [93] Abeyakoon O, Latifoltojar A, Gong F, Papoutsaki MV, Chowdhury R, Glaser M, et al. Hyperpolarised (13)C MRI: a new horizon for non-invasive diagnosis of aggressive breast cancer. BJR Case Rep 2019;5:20190026.
  • [94] Ming Y, Wu N, Qian T, Li X, Wan DQ, Li C, et al. Progress and future trends in PET/CT and PET/MRI molecular imaging approaches for breast cancer. Front Oncol 2020;10:1301.
  • [95] Woitek R, McLean MA, Gill AB, Grist JT, Provenzano E, Patterson AJ, et al. Hyperpolarized (13)C MRI of tumor metabolism demonstrates early metabolic response to neoadjuvant chemotherapy in breast cancer. Radiol Imaging Cancer 2020;2 e200017.
  • [96] Shin PJ, Zhu Z, Camarda R, Bok RA, Zhou AY, Kurhanewicz J, et al. Cancer recurrence monitoring using hyperpolarized [1-(13)C]pyruvate metabolic imaging in murine breast cancer model. Magn Reson Imaging 2017;43:105–9.
  • [97] Freeman M, Laks S. Surveillance imaging for metastasis in high-risk melanoma: importance in individualized patient care and survivorship. Melanoma Manag 2019;6. MMT12.
  • [98] Tripp MK, Watson M, Balk SJ, Swetter SM, Gershenwald JE. State of the science on prevention and screening to reduce melanoma incidence and mortality: the time is now. CA Cancer J Clin 2016;66:460–80.
  • [99] Smith L, Macneil S. State of the art in non-invasive imaging of cutaneous melanoma. Skin Res Technol 2011;17:257–69.
  • [100] Czarnecka AM, Bartnik E, Fiedorowicz M, Rutkowski P. Targeted therapy in melanoma and mechanisms of resistance. Int J Mol Sci 2020;21.
  • [101] Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, et al. Metabolic plasticity of melanoma cells and their crosstalk with tumor microenvironment. Front Oncol 2020;10:722.
  • [102] Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O’Neill LA, et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab 2019;1:16–33.
  • [103] Acciardo S, Mignion L, Lacomblez E, Schoonjans C, Joudiou N, Gourgue F, et al. Metabolic imaging using hyperpolarized (13) C-pyruvate to assess sensitivity to the B-Raf inhibitor vemurafenib in melanoma cells and xenografts. J Cell Mol Med 2020;24:1934–44.
  • [104] Baenke F, Chaneton B, Smith M, Van Den Broek N, Hogan K, Tang H, et al. Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Mol Oncol 2016;10:73–84.
  • [105] Dutta P, Salzillo TC, Pudakalakatti S, Gammon ST, Kaipparettu BA, McAllister F, et al. Assessing therapeutic efficacy in real-time by hyperpolarized magnetic resonance metabolic imaging. Cells 2019;8.
  • [106] Jaiswal AR, Liu AJ, Pudakalakatti S, Dutta P, Jayaprakash P, Bartkowiak T, et al. Melanoma evolves complete immunotherapy resistance through the acquisition of a hypermetabolic phenotype. Cancer Immunol Res 2020;8:1365–80.
  • [107] Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, Weikert S, et al. The epidemiology of renal cell carcinoma. Eur Urol 2011;60:615–21.
  • [108] Gupta K, Miller JD, Li JZ, Russell MW, Charbonneau C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat Rev 2008;34:193–205.
  • [109] Escudier B, Porta C, Schmidinger M, Rioux-Leclercq N, Bex A, Khoo V, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann Oncol 2019;30:706–20.
  • [110] Escudier B, Eisen T, Porta C, Patard JJ, Khoo V, Algaba F, et al. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23 (Suppl 7):vii65–i71.
  • [111] Aurangabadkar H, Ali Z. Unusual metastatic sites from renal cell carcinoma detected by 18F-FDG PET/CT scan. Clin Nucl Med 2013.
  • [112] Muselaers S, Mulders P, Oosterwijk E, Oyen W, Boerman O. Molecular imaging and carbonic anhydrase IX-targeted radioimmunotherapy in clear cell renal cell carcinoma. Immunotherapy 2013;5:489–95.
  • [113] Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, Merseburger AS, et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 2010;58:398–406.
  • [114] Luczynska E, Dyczek S, Heinze-Paluchowska S, Komorowski A, Pawlik T, Wysocki W, et al. Nephrectomy or nephronsparing surgery - how to decide? Contemp Oncol (Pozn) 2013;17:88–93.
  • [115] Hammett J, Ko J, Byrd N, Crispen PL, Krupski TL. Patterns of care for renal surgery: Underutilization of nephron-sparing procedures. Can Urol Assoc J 2013;7:E386–92.
  • [116] Sriram R, Gordon J, Baligand C, Ahamed F, Delos Santos J, Qin H, et al. Non-invasive assessment of lactate production and compartmentalization in renal cell carcinomas using hyperpolarized (13)C pyruvate MRI. Cancers (Basel) 2018;10.
  • [117] Sriram R, Van Criekinge M, DeLos Santos J, Keshari KR, Wilson DM, Peehl D, et al. Non-invasive differentiation of benign renal tumors from clear cell renal cell carcinomas using clinically translatable hyperpolarized (13)C pyruvate magnetic resonance. Tomography. 2016;2:35-42.
  • [118] Sriram R, Van Criekinge M, Hansen A,Wang ZJ, Vigneron DB, Wilson DM, et al. Real-time measurement of hyperpolarized lactate production and efflux as a biomarker of tumor aggressiveness in an MR compatible 3D cell culture bioreactor. NMR Biomed 2015;28:1141–9.
  • [119] Koelsch BL, Sriram R, Keshari KR, Leon Swisher C, Van Criekinge M, Sukumar S, et al. Separation of extra- and intracellular metabolites using hyperpolarized (13)C diffusion weighted MR. J Magn Reson 2016;270:115–23.
  • [120] Tran M, Latifoltojar A, Neves JB, Papoutsaki MV, Gong F, Comment A, et al. First-in-human in vivo non-invasive assessment of intra-tumoral metabolic heterogeneity in renal cell carcinoma. BJR Case Rep 2019;5.
  • [121] Dong Y, Eskandari R, Ray C, Granlund KL, Santos-Cunha LD, Miloushev VZ, et al. Hyperpolarized MRI visualizes warburg effects and predicts treatment response to mTOR inhibitors in patient-derived ccRCC xenograft models. Cancer Res 2019;79:242–50.
  • [122] Fiedorowicz M, Bartnik E, Sobczuk P, Teterycz P, Czarnecka AM. Molecular biology of sarcoma. Mol Biol Sarcoma 2018;14:307–30.
  • [123] Chan WP. Magnetic resonance imaging of soft-tissue tumors of the extremities: a practical approach. World J Radiol 2013;5:455–9.
  • [124] Di Gialleonardo V, Aldeborgh HN, Miloushev V, Folkers KM, Granlund K, Tap WD, et al. Multinuclear NMR and MRI reveal an early metabolic response to mTOR inhibition in sarcoma. Cancer Res 2017;77:3113–20.
  • [125] Gutte H, Hansen AE, Larsen MM, Rahbek S, Henriksen ST, Johannesen HH, et al. Simultaneous hyperpolarized 13Cpyruvate MRI and 18F-FDG PET (HyperPET) in 10 dogs with cancer. J Nucl Med 2015;56:1786–92.
  • [126] Hansen AE, Gutte H, Holst P, Johannesen HH, Rahbek S, Clemmensen AE, et al. Combined hyperpolarized (13)Cpyruvate MRS and (18)F-FDG PET (hyperPET) estimates of glycolysis in canine cancer patients. Eur J Radiol 2018;103:6–12.
  • [127] Gutte H, Hansen AE, Henriksen ST, Johannesen HH, Ardenkjaer-Larsen J, Vignaud A, et al. Simultaneous hyperpolarized (13)C-pyruvate MRI and (18)F-FDG-PET in cancer (hyperPET): feasibility of a new imaging concept using a clinical PET/MRI scanner. Am J Nucl Med Mol Imaging 2015;5:38–45.
  • [128] Miloushev VZ, Keshari KR, Holodny AI. Hyperpolarization MRI: preclinical models and potential applications in neuroradiology. Top Magn Reson Imaging 2016;25:31–7.
  • [129] Autry AW, Hashizume R, James CD, Larson PEZ, Vigneron DB, Park I. Measuring tumor metabolism in pediatric diffuse intrinsic pontine glioma using hyperpolarized carbon-13 MR metabolic imaging. Contrast Media Mol Imaging 2018;2018:3215658.
  • [130] Guglielmetti C, Chou A, Krukowski K, Najac C, Feng X, Riparip LK, et al. In vivo metabolic imaging of traumatic brain injury. Sci Rep 2017;7:17525.
  • [131] Guglielmetti C, Najac C, Didonna A, Van der Linden A, Ronen SM, Chaumeil MM. Hyperpolarized (13)C MR metabolic imaging can detect neuroinflammation in vivo in a multiple sclerosis murine model. Proc Natl Acad Sci USA 2017;114:E6982–91.
  • [132] Park I, Larson PEZ, Gordon JW, Carvajal L, Chen HY, Bok R, et al. Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 2018;80:864–73.
  • [133] Anon. Hypersense Operator & Maintenance Manual. 2008.
  • [134] Kubala E, Muñoz-Álvarez KA, Topping G, Hundshammer C, Feuerecker B, Gómez PA, et al. Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and Imaging. JoVE. 2016: e54751.
  • [135] Anon. SpinAligner User Manual. 2020.
  • [136] Anon. SPINlab Reusable Fluid Path Operating Manual. In: GE Research Circle Technology I, editor.2014.
  • [137] Ravoori MK, Singh SP, Lee J, Bankson JA, Kundra V. In vivo assessment of ovarian tumor response to tyrosine kinase inhibitor pazopanib by using hyperpolarized (13)C-pyruvate MR spectroscopy and (18)F-FDG PET/CT imaging in a mouse model. Radiology 2017;285:830–8.
  • [138] Lim H, Martínez-Santiesteban F, Jensen MD, Chen A, Wong E, Scholl TJ. Monitoring early changes in tumor metabolism in response to therapy using hyperpolarized (13)C MRSI in a preclinical model of glioma. Tomography 2020;6:290–300.
  • [139] Eldirdiri A, Clemmensen A, Bowen S, Kjaer A, Ardenkjaer-Larsen JH. Simultaneous imaging of hyperpolarized [1,4-(13)C(2) ]fumarate, [1-(13) C]pyruvate and (18) F-FDG in a rat model of necrosis in a clinical PET/MR scanner. NMR Biomed 2017;30.
  • [140] Lauritzen MH, Laustsen C, Butt SA, Magnusson P, Søgaard LV, Ardenkjær-Larsen JH, et al. Enhancing the [13C] bicarbonate signal in cardiac hyperpolarized [1-13C]pyruvate MRS studies by infusion of glucose, insulin and potassium. NMR Biomed 2013;26:1496–500.
  • [141] Schroeder MA, Swietach P, Atherton HJ, Gallagher FA, Lee P, Radda GK, et al. Measuring intracellular pH in the heart using hyperpolarized carbon dioxide and bicarbonate: a 13C and 31P magnetic resonance spectroscopy study. Cardiovasc Res 2010;86:82–91.
  • [142] Friesen-Waldner LJ, Wade TP, Thind K, Chen AP, Gomori JM, Sosna J, et al. Hyperpolarized choline as an MR imaging molecular probe: feasibility of in vivo imaging in a rat model. J Magn Reson Imaging 2015;41:917–23.
  • [143] Chen AP, Kurhanewicz J, Bok R, Xu D, Joun D, Zhang V, et al. Feasibility of using hyperpolarized [1-13C]lactate as a substrate for in vivo metabolic 13C MRSI studies. Magn Reson Imaging 2008;26:721–6.
  • [144] Chen AP, Lau JY, Alvares RD, Cunningham CH. Using [1-(13)C]lactic acid for hyperpolarized (13) C MR cardiac studies. Magn Reson Med 2015;73:2087–93.
  • [145] Grist JT, Mariager C, Qi H, Nielsen PM, Laustsen C. Detection of acute kidney injury with hyperpolarized [(13) C, (15) N]Urea and multiexponential relaxation modeling. Magn Reson Med 2020;84:943–9.
  • [146] Le Page LM, Guglielmetti C, Najac CF, Tiret B, Chaumeil MM. Hyperpolarized (13) C magnetic resonance spectroscopy detects toxin-induced neuroinflammation in mice. NMR Biomed 2019;32 e4164.
  • [147] Baligand C, Qin H, True-Yasaki A, Gordon JW, von Morze C, Santos JD, et al. Hyperpolarized (13) C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model. NMR Biomed 2017;30.
  • [148] Park JM, Khemtong C, Liu SC, Hurd RE, Spielman DM. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1-(13) C]Alanine. Magn Reson Med 2017;77:1741–8.
  • [149] Cho A, Eskandari R, Granlund KL, Keshari KR. Hyperpolarized [6-(13)C, (15)N(3)]-arginine as a probe for in vivo arginase activity. ACS Chem Biol 2019;14:665–73.
  • [150] Canapè C, Catanzaro G, Terreno E, Karlsson M, Lerche MH, Jensen PR. Probing treatment response of glutaminolytic prostate cancer cells to natural drugs with hyperpolarized [5-(13) C]glutamine. Magn Reson Med 2015;73:2296–305.
  • [151] Karlsson M, Jensen PR, in ’t Zandt R, Gisselsson A, Hansson G, Duus J, et al. Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate. Int J Cancer 2010;127:729–36.
  • [152] von Morze C, Bok RA, Ohliger MA, Zhu Z, Vigneron DB, Kurhanewicz J. Hyperpolarized [(13)C]ketobutyrate, a molecular analog of pyruvate with modified specificity for LDH isoforms. Magn Reson Med 2016;75:1894–900.
  • [153] Kishimoto S, Brender JR, Crooks DR, Matsumoto S, Seki T, Oshima N, et al. Imaging of glucose metabolism by 13C-MRI distinguishes pancreatic cancer subtypes in mice. Elife 2019;8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99fb10eb-8fea-4b19-803f-44ab3b713dae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.