PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Active noise control with a single nonlinear control filter for a vibrating plate with multiple actuators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Vibrating plates can be used in Active Noise Control (ANC) applications as active barriers or as secondary sources replacing classical loudspeakers. The system with vibrating plates, especially when nonlinear MFC actuators are used, is nonlinear. The nonlinearity in the system reduces performance of classical feedforward ANC with linear control filters systems, because they cannot cope with harmonics generated by the nonlinearity. The performance of the ANC system can be improved by using nonlinear control filters, such as Artificial Neural Networks or Volterra filters. However, when multiple actuators are mounted on a single plate, which is a common practice to provide effective control of more vibration modes, each actuator should be driven by a dedicated nonlinear control filter. This significantly increases computational complexity of the control algorithm, because adaptation of nonlinear control filters is much more computationally demanding than adaptation of linear FIR filters. This paper presents an ANC system with multiple actuators, which are driven with a single nonlinear filter. To avoid destructive interference of vibrations generated by different actuators the control signal is filtered by appropriate separate linear filters. The control system is experimentally verified and obtained results are reported.
Rocznik
Strony
537--545
Opis fizyczny
Bibliogr. 29 poz., wykr.
Twórcy
autor
  • Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
  • Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • 1. Bismor D. (2012), LMS algorithm step size adjustment for fast convergence, Archives of Acoustics, 37, 1, 31-40.
  • 2. Brański A., Szela S. (2008), Improvement of effectiveness in active triangular plate vibration reduction, Archives of Acoustics, 33, 4, 521-530.
  • 3. Das D.P., Panda G. (2004), Active mitigation of nonlinear noise Processes using a novel filtered-s LMS algorithm, IEEE Transactions on Speech and Audio Processing, 12, 3, 313-322.
  • 4. El Kadiri M., Benamar R., White R.G. (1999), The non-linear free vibration of fully clamped rectangular plates: second non-linear mode for various plate aspect ratios, Journal of Sound and Vibration, 228, 2, 333-358.
  • 5. Elliott S. (2001), Signal Processing for Active Control, London 2001, Academic Press.
  • 6. Fahy F., Gardonio P. (2007), Sound and Structural Vibration, Second edition, Elsevier, Oxford.
  • 7. George N.V., Panda G. (2012), A robust filtered-s LMS algorithm for nonlinear active noise control, Applied Acoustics, 73, 836-841.
  • 8. George N.V., Panda G. (2013), Advances in active noise control: A survey, with emphasis on recent nonlinear techniques, Signal Processing, 93, 363-377.
  • 9. Górski P., Kozupa M. (2012) Variable Sound Insulation Structure with MFC Elements, Archives of Acoustics, 37, 1, 115-120.
  • 10. Górski P., Morzyński L. (2013), Active Noise Reduction Algorithm Based on NOTCH Filter and Genetic Algorithm, Archives of Acoustics, 38, 2, 185-190.
  • 11. Hansen C.H., Snyder S.D. (1997), Active Control of Noise and Vibration, E & FN Spon, London.
  • 12. Keira J., Kessissogloua N.J., Norwoodb C.J. (2005), Active control of connected plates using single and multiple actuators and error sensors, Journal of Sound and Vibration, 281, 73-97.
  • 13. Kuo S.M., Morgan D.R. (1996), Active Noise Control Systems, John Wiley & Sons, Inc., New York.
  • 14. Latos M., Pawełczyk M. (2010), Adaptive Algorithms for Enhancement of Speech Subject to a High Level Noise, Archives of Acoustics, 35, 2, 203-212.
  • 15. Leniowska L. (2011), An Adaptive Vibration Control Procedure Based on Symbolic Solution of Diophantine Equation, Archives of Acoustics, 36, 4, 901-912.
  • 16. Liu C., Li F., Fang B., Zhao Y., Huang W. (2010), Active control of power flow transmission in finite connected plate, Journal of Sound and Vibration, 329, 4124-4135.
  • 17. Pawełczyk M. (2008), Active noise control a review of control-related problems, Archives of Acoustics, 33, 4, 509-520.
  • 18. Mazur K., Pawełczyk M. (2011a), Feed-forward compensation for nonlinearity of vibrating plate as the sound source for active noise control, Mechanics and Control, 30, 3, 146-150.
  • 19. Mazur K., Pawełczyk M. (2011b), Active noisevibration control using the filtered-reference LMS algorithm with compensation of vibrating plate temperature variation, Archives of Acoustics, 36, 1, 65-76.
  • 20. Mazur K., Pawełczyk M. (2013), Hammerstein nonlinear active noise control with the Filtered-Error LMS algorithm, Archives of Acoustics, 38, 2, 197-203.
  • 21. Pietrzko S.J. (2009), Contributions to Noise and Vibration Control Technology, AGH University of Science and Technology Press, Krakow.
  • 22. Rdzanek W.P., Szemela K., Pieczonka D. (2011), Acoustic Pressure Radiated by a Circular Membrane Into the Quarter-Space, Archives of Acoustics, 36, 1, 121-139.
  • 23. Rdzanek W.P., Zawieska W.M. (2003), Vibroacoustic analysis of a simply supported rectangular plate of a power transformer casing, Archives of Acoustics, 28, 2, 117-125.
  • 24. Saha K.N., Misra D., Ghosal S., Pohit G. (2005), Nonlinear free vibration analysis of square plates with various boundary conditions, Journal of Sound and Vibration, 287, 1031-1044.
  • 25. Stuebner M., Smith R.C., Hays M., Oates W.S. (2009), Modeling the nonlinear behavior of Macro Fiber Composite actuators, Behavior and Mechanics of Multifunctional Materials and Composites 2009, Proceedings of the SPIE, 7289, 728913-728918.
  • 26. Tan L., Jiang J. (2001), Adaptive Volterra filters for active control of nonlinear noise processes, IEEE Transactions on Signal Processing, 49, 8, 1667-1676.
  • 27. Wrona S., Pawełczyk M. (2013), Controllability-oriented placement of actuators for active noise-vibration control of rectangular plates using a memetic algorithm, Archives of Acoustics, 38, 4, 529-536.
  • 28. Zawieska W.M., Rdzanek W.P. (2007), The influence of a vibrating rectangular piston on the acoustic power radiated by a rectangular plate, Archives of Acoustics, 32, 2, 405-415.
  • 29. Zawieska W.M., Rdzanek W.P., Rdzanek W.J., Engel Z. (2007), Low frequency estimation for the sound radiation efficiency of some simply supported flat plates, Acta Acustica United with Acustica, 93, 3, 353-363.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99f7cceb-c35c-4a22-80dd-8b16c2ac0285
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.