PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust estimation based nonlinear higher order sliding mode control strategies for PMSG-WECS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wind energy conversion systems (WECS) suffer from an intermittent nature of source (wind) and the resulting disparity between power generation and electricity demand. Thus, WECS are required to be operated at maximum power point (MPP). This research paper addresses a sophisticated MPP tracking (MPPT) strategy to ensure optimum (maximum) power out of the WECS despite environmental (wind) variations. This study considers a WECS (fixed pitch, 3KW, variable speed) coupled with a permanent magnet synchronous generator (PMSG) and proposes three sliding mode control (SMC) based MPPT schemes, a conventional first order SMC (FOSMC), an integral back-stepping-based SMC (IBSMC) and a super-twisting reachability-based SMC, for maximizing the power output. However, the efficacy of MPPT/control schemes rely on availability of system parameters especially, uncertain/nonlinear dynamics and aerodynamic terms, which are not commonly accessible in practice. As a remedy, an off-line artificial function-fitting neural network (ANN) based on Levenberg-Marquardt algorithm is employed to enhance the performance and robustness of MPPT/control scheme by effectively imitating the uncertain/nonlinear drift terms in the control input pathways. Furthermore, the speed and missing derivative of a generator shaft are determined using a high-gain observer (HGO). Finally, a comparison is made among the stated strategies subjected to stochastic and deterministic wind speed profiles. Extensive MATLAB/Simulink simulations assess the effectiveness of the suggested approaches.
Rocznik
Strony
art. no. e147063
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Department of Electrical Engineering, National University of Science and Technology, Pakistan
  • Department of Electrical Engineering, National University of Science and Technology, Pakistan
  • Department of Electronics Engineering, University of Engineering and Technology Peshawar, Abbottabad campus, Pakistan
autor
  • Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus, Pakistan
autor
  • Department of Electrical, Electronics and Computer Systems, College of Engineering and Technology, University of Sargodha, Pakistan
  • Electrical Engineering Department, College of Engineering, Najran University, Saudi Arabia
  • Electrical Engineering Department, College of Engineering, Najran University, Saudi Arabia
  • Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • [1] M.A. Abdullah, A. Yatim, C.W. Tan, and R. Saidur, “A review of maximum power point tracking algorithms for wind energy systems,” Renew. Sust. Energy Rev., vol. 16, no. 5, pp. 3220–3227, 2012.
  • [2] S.M.R. Kazmi, H. Goto, H.-J. Guo, and O. Ichinokura, “Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system,” in 2010 IEEE energy conversion congress and exposition. IEEE, 2010, pp. 4075–4082.
  • [3] S. Mishra, S. Shukla, N. Verma et al., “Comprehensive review on maximum power point tracking techniques: wind energy,” in 2015 Communication, Control and Intelligent Systems (CCIS). IEEE, 2015, pp. 464–469.
  • [4] J.S. Guimarães, B.R. de Almeida, F.L. Tofoli, and D. de Souza Oliveira, “Three-phase grid-connected wecs with mechanical power control,” IEEE Trans. Sust. Energy, vol. 9, no. 4, pp. 1508–1517, 2018.
  • [5] Q. Wang and L. Chang, “An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1242–1249, 2004.
  • [6] M.A. Khan, S. Ullah, L. Khan, Q. Khan, Z.A. Khan, H. Zaman, and S. Ahmad, “Observer based higher order sliding mode control scheme for pmsg-wecs,” in 2019 15th International Conference on Emerging Technologies (ICET). IEEE, 2019, pp. 1–6.
  • [7] Z.M. Dalala, Z.U. Zahid, and J.-S. Lai, “New overall control strategy for small-scale wecs in mppt and stall regions with mode transfer control,” IEEE Trans. Energy Convers., vol. 28, no. 4, pp. 1082–1092, 2013.
  • [8] M.A. Khan, Q. Khan, L. Khan, I. Khan, A.A. Alahmadi, and N. Ullah, “Robust differentiator-based neurofuzzy sliding mode control strategies for pmsg-wecs,” Energies, vol. 15, no. 19, p. 7039, 2022.
  • [9] C. Wei, Z. Zhang, W. Qiao, and L. Qu, “An adaptive network-based reinforcement learning method for mppt control of pmsg wind energy conversion systems,” IEEE Trans. Power Electron., vol. 31, no. 11, pp. 7837–7848, 2016.
  • [10] S.M. Barakati, M. Kazerani, and J.D. Aplevich, “Maximum power tracking control for a wind turbine system including a matrix converter,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 705–713, 2009.
  • [11] M. Simoes, B.K. Bose, and R.J. Spiegel, “Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system,” IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 956–965, 1997.
  • [12] M. Pucci and M. Cirrincione, “Neural mppt control of wind generators with induction machines without speed sensors,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 37–47, 2010.
  • [13] I. Khan, A.I. Bhatti, A. Arshad, and Q. Khan, “Robustness and performance parameterization of smooth second order sliding mode control,” Int. J. Control Autom. Syst., vol. 14, no. 3, pp. 681–690, 2016.
  • [14] I.K. Yousufzai, F. Waheed, Q. Khan, A.I. Bhatti, R. Ullah, and R. Akmeliawati, “A linear parameter varying strategy based integral sliding mode control protocol development and its implementation on ball and beam balancer,” IEEE Access, vol. 9, pp. 74 437–74 445, 2021.
  • [15] I. Khan, “On performance based design of smooth sliding mode control,” Ph.D. dissertation, 2016.
  • [16] Z. Alam, I. Ahmad, S. Ullah, F. Ullah, M.A. Khan, M. Zafran, and A.U. Rehman, “Maximum power extraction from photo-voltaic system using integral sliding mode control,” in 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, 2020, pp. 1–5.
  • [17] I.U. Haq, Q. Khan, I. Khan, R. Akmeliawati, K.S. Nisar, and I. Khan, “Maximum power extraction strategy for variable speed wind turbine system via neuro-adaptive generalized global sliding mode controller,” IEEE Access, vol. 8, pp. 128 536–128 547, 2020.
  • [18] Y. Soufi, S. Kahla, and M. Bechouat, “Feedback linearization control based particle swarm optimization for maximum power point tracking of wind turbine equipped by pmsg connected to the grid,” Int. J. Hydrog. Energy, vol. 41, no. 45, pp. 20 950–20 955, 2016.
  • [19] Y. Bazargan-Lari, M. Eghtesad, and B. Assadsangabi, “Study of internal dynamics stability and regulation of globular-spray mode of gmaw process via mimo feedback-linearization scheme,” in 2008 International Conference on Intelligent Engineering Systems. IEEE, 2008, pp. 31–36.
  • [20] X.-Y. Lu and S. K. Spurgeon, “Output feedback stabilization of mimo non-linear systems via dynamic sliding mode,” Int. J. Robust Nonlinear Control, vol. 9, no. 5, pp. 275–305, 1999.
  • [21] I.U. Khan, L. Khan, Q. Khan, S. Ullah, U. Khan, and S. Ahmad, “Neuro-adaptive backstepping integral sliding mode control design for nonlinearwind energy conversion system,” Turk. J. Electr. Eng. Comput. Sci., vol. 29, no. 2, pp. 531–547, 2021.
  • [22] M. Mat-Noh, M. Arshad, R. Mohd-Mokhtar, and Q. Khan, “Back-stepping integral sliding mode control (bismc) application in a nonlinear autonomous underwater glider,” in 2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications (USYS). IEEE, 2017, pp. 1–6.
  • [23] Q. Khan, A.I. Bhatti, S. Iqbal, and M. Iqbal, “Dynamic integral sliding mode for mimo uncertain nonlinear systems,” Int. J. Control Autom. Syst., vol. 9, no. 1, pp. 151–160, 2011.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99f3a43c-b47b-4d14-80c2-b2c3856c8d67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.