PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Beht Watershed (Morocco) Rainfall-Runoff Simulation with the HEC-HMS Hydrological Model

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aimed to prepare for spatial hydrological modeling using the Hydrologic Modeling System (HECHMS) by integrating different spatial technologies to study the Beht catchment area, which covers 4560 km2 and also has a perimeter of 414 km. Firstly, the approach was to extract automatically the sub-basins and the drainage network. Then, these data were edited using the HEC-GEO-HMS extension, whereas the land use and land cover data were prepared for the generation of a Curve Number (CN) map of Beht watershed; lastly, the basin model was imported into the Hydrologic Modeling System (HEC-HMS) to simulate the surface runoff. The findings indicated a good match between the calculated and measured values and revealed also that the model is valid, good and performed well in terms of assessment criterion, with average values of Relative Error in peak: REP = 9.6%, Relative Error in volume: REV = 1.69%, Nash-Sutcliffe Efficiency: NSE = 0.63, coefficient of determination: R2 = 0.870, and Ratio of standard deviation of observations to root mean square error: RSR = 0.36.
Twórcy
autor
  • Functional Ecology & Environmental Engineering Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
  • Functional Ecology & Environmental Engineering Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
  • Functional Ecology & Environmental Engineering Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
  • Intelligent Systems, Georesources & Renewable Energies Laboratory, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Bibliografia
  • 1. Banasik K. 2010. Empirical determination of runoff curve number for a small agricultural watershed in Poland. 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, pp. 11.
  • 2. Banitt A. 2010. Simulating a century of hydrographse Mark Twain reservoir. In Proceeding of 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA.
  • 3. Bennett N.D., Croke B.F.W., Guariso G., Guillaume J.H.A., Hamilton S.H., Jakeman A.J., Marsili-Libelli S., Newhama L.T.H., Norton J.P., Perrin C., Pierce S.A., Robson B., Seppelt R., Voinov A.A., Fath B.D., et Andreassian V. 2013. Characterizing performance of environmental models. J. Environmental Modelling & Software, 40, 1–20.
  • 4. Birkhead A., James C. 2002. Muskingum river routing with dynamic bank storage. J. Hydrol., 264, 113–132.
  • 5. Chadli K., Kirat M., Laadoua A.. et al. 2016. Runoff modeling of Sebou watershed (Morocco) using SCS curve number method and geographic information system. Model. Earth Syst. Environ., 2, 158.
  • 6. Chatterjee M., De R., Roy D., Das S. et Mazumdar A. 2014. Hydrological Modeling Studies with HECHMS for Damodar Basin, India. World Applied Sciences Journal, 31(12), 2148–2154.
  • 7. Cheng C., Ou C., Chau K. 2002. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration. J. Hydrol., 268, 72–86.
  • 8. Giridhar M.V.S.S., Viswanadh G.K. 2014. Runoff estimation in an ungauged watershed using RS and GIS. J. I. Ass. W.W., 9.
  • 9. Gyozo J. 2003. Morphometric Analysis and Tectonic Interpretation of Terrain Data: a case study. Earth Surf. Process and Landforms, 28, 807–822.
  • 10. Hawkins R.H. 1993. Asymptotic determination of runoff curve numbers from data. J. Irrig. Drain. Eng., 119, 334–345.
  • 11. Hawkins R.H., Ward T.J., Woodward D.E., Van Mullem J.A. 2009. Curve Number Hydrology: State of Practice; American Society of Civil Engineers: Reston, VI, USA.
  • 12. Ji-Hong J., Kyoung J.L., Bernard A.E. 2014. Regional Calibration of SCS-CN L-THIA Model: Application for Ungauged Basins. Water, 6, 1339–1359, 21.
  • 13. Mary J.M. 1995. HER-hydrologic evaluation of runoff; the soil conservation service curve numer technique as an interactive computer model. Computers & Geosciences, 21(8), 929–935.
  • 14. McCarthy G.T. 1938. The unit hydrograph and flood routing. In Proceedings of Conference of North Atlantic Division, Washington, WA, USA.
  • 15. Mishra S.K., Singh V.P. 2002. SCS-CN method. Part-I: Derivation of SCS-CN based models. Acta Geophy. Pol., 50, 457–477.
  • 16. Mishra S.K., Singh V.P. 2003. Soil conservation service curve number (SCS-CN) methodology. Water Sci. And Tech. Library. Volume, 42, 534.
  • 17. Mishra S.K., Kansal A.K., Aggarwa N. 2012. Assessment of design runoff curve number for a watershed. Water Practice & Technology, 7(4), 8.
  • 18. Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., Veith T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T. ASABE. 50, 885–900.
  • 19. Musy A., et Higy C. 1998. Applied Hydrology, Edition *H*G*A*, Bucarest, pp. 368.
  • 20. Najim M.M.M., Babelb M.S., Loofb R. 2006. AGNPS model assessment for a mixed forested watershed in Thailand. http://dx.doi.org/10.2306/scienceasia1513-1874.2006.32.053
  • 21. Nash J.E., Sutcliffe J.V. 1970. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol., 10, 282–290.
  • 22. Neter J,, Wasserman W,, Kutner M.H. 1990. Applied statistical models. Richard D. Irwin, Inc.: Burr Ridge, IL.
  • 23. Okirya M., Albert R., Janka O. 2012. Application of Hec-Hms/Ras and GIS Tools in Flood Modeling: A Case Study for River Sironko. Global journal of engineering, design & technology, 1(2), 19–31.
  • 24. PDAIRE (Plan directeur d’aménagement intégré des ressources en eau). 2011. Agence Du Bassin Hydraulique Du Sebou.
  • 25. Ponce V.M., Hawkins R.H. 1996. Runoff curve number: Has it reached maturity? J. Hydrol. Eng., 1, 11–19.
  • 26.Ramirez J.A. 2000. Prediction and modeling of flood hydrology and hydraulics. In Inland Flood Hazards: Human, Riparian and Aquatic Communities. E. Wohl, ed. Cambridge, U.K. Cambridge University Press.
  • 27. Shadeed S., Almasri M. 2010. Application of GISbased SCS-CN method in West Bank catchments, Palestine. Water Sci. and Eng., 3, 13.
  • 28. USACE. 2008. Hydrologic Modeling System (HEC-HMS) application guide. Institute for Water Resources, Davis.
  • 29. USACE (United States Army Corps of Engineers). 2009. HEC-GeoHMS Geospatial Hydrologic Modeling Extension, Technical Reference Manual, Davis, CA 95616 USA, CPD-77.
  • 30.USACE (United States Army Corps of Engineers). 2010. Geospatial hydrologic modeling extension, HEC-GeoHMS, user’s manual version 10. Davis, CA, USA.
  • 31. USACE (United States Army Corps of Engineers). 2015. Hydrologic Modeling System, HEC-HMS. Quick Start Guide; US Army Corps of Engineers Institute for Water Resources Hydrologic Engineering Center: Davis, CA, USA.
  • 32. USDA SCS-Soil Conservation Service. 1985. National Engineering Handbook. Section 4. Hydrology. Washington DC.
  • 33. USDA (United States Department of Agriculture). 1986. Urban Hydrology for Small Watersheds, Technical Release 55, Natural Resources Conservation Services, Conservation Engineering Division, Washington, DC, USA. Second Edition, June, 164.
  • 34. Xiao B.O., Qing-Hai W. 2011. Application of the SCS-CN Model to Runoff Estimation in a Small Watershed with High Spatial Heterogeneity. Beijing Research & Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Pedosphere, 21(6), 738–749, 21.
  • 35. Zou K.H., Tuncali K., Silverman S.G. 2003. Correlation and simple linear regression. Radiology 227, 617–628.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99f022d9-c24f-44be-80cb-ffaf8bf6cd21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.