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1. Introduction

The immediate cause of preparing this paper was the interest in the classic pro-
blem of cake cutting. We may consider Polish mathematicians, Steinhaus, Banach
and Knaster, as the creators of this problem (see [11, 19]). This subject matter is
still very inspiring which is evidenced by rich literature (we give only a selected
set of respective papers [1, 10, 11, 15]).
Let E be a nonempty set. Let us denote by P(E) the family of all subsets of E.

LetM be a σ-algebra of subsets of nonempty set Ω. Let us denote by µ a positive,
σ-additive measure on M.

Definition 1. A set A ∈M is an atom of measure µ if µ(A) > 0 and if B ⊂ A,
B ∈M, then either µ(B) = 0 or µ(B) = µ(A).

Definition 2. A set A ∈ M is called to be atomless (with respect to measure µ)

if neither A nor any of its µ-measurable subsets is the atom. A M-measurable set

A, which is atomless with respect to µ, will be called the µ-atomless.

By the last definition we get the following lemma.

Lemma 3. If set A ∈ M is µ-atomless, then any M-measurable subset of A is

also µ-atomless.

Lemma 4. If set A ∈ M is µ-atomless and µ(A) > 0 then there exists a sequ-
ence of µ-measurable sets {Bn}n>1 such that Bn+1 ⊂ Bn ⊂ A, µ(Bn) > 0 and
lim
n
µ(Bn) = 0.

Proof. If µ(A) = +∞ then because set A is µ-atomless we get that there exists
the µ-measurable set A′ ⊂ A such that 0 < µ(A′) < µ(A). Obviously the set A′ is
also µ-atomless. Thus we may assume that µ(A) < +∞.
Since set A is atomless then there exists a µ-measurable set B ⊂ A such that

µ(A) > µ(B) > 0. A set A\B is also µ-measurable and µ(A\B) = µ(A)−µ(B) > 0.
From equality µ(A) = µ(B) +µ(A \B) we get that at least one of sets B or A \B
possesses the measure no greater than 12µ(A). We denote this set by B1. So we
know that B1 ∈M and µ(B1) 6 1

2µ(A).
Assume that the µ-measurable set Bn ⊂ A is already constructed for some n ∈

N, where 0 < µ(Bn) 6 1
2nµ(A). A set Bn, as a subset of atomless set, is atomless
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as well, so there exists a µ-measurable set B′n ⊂ Bn such that µ(Bn) > µ(B
′

n) > 0.
Also a set Bn \ B′n is measurable and µ(Bn \ B

′

n) = µ(Bn) − µ(B
′

n) > 0. From
equality µ(Bn) = µ(B′n) + µ(Bn \ B

′

n) we get that at least one of sets B
′

n or
Bn \ B′n possesses the measure no greater than

1
2µ(Bn). We denote this set by

Bn+1. Of courseM ∋ Bn+1 ⊂ Bn and µ(Bn+1) 6 1
2µ(Bn) 6

1
2n+1µ(A). Applying

the Axiom of Countable Dependent Choices we finish the proof. �

Theorem 5. If set A ∈M is µ-atomless and µ(A) > 0, then for any α ∈
(

0, µ(A)
)

there exists B ∈M, B ⊂ A such that µ(B) = α.

Proof. Let α ∈
(

0, µ(A)
)

. We create the auxiliary sequences – of M-measurable
sets {Bn} and of positive numbers {βn} in the following way.
By Lemma 4 there exists the µ-measurable set B ⊂ A such that 0 < µ(B) < α.

Let us define

B1 := B, β1 := sup{µ(D) : D ∈M, B1 ⊆ D ⊆ A, µ(D) 6 α}.

We choose a set B2 ∈ M such that B1 ⊂ B2 ⊂ A and β1 − 12 6 µ(B2) 6 β1.
Having a specified set Bn ∈M, for some n ∈ N, we define

βn := sup{µ(D) : D ∈M, Bn ⊆ D ⊆ A, µ(D) 6 α},

and we choose set Bn+1 ∈M such that the following two conditions are satisfied:
Bn ⊂ Bn+1 ⊂ A and βn− 1

2n 6 µ(Bn+1) 6 βn. Since sequence {Bn} is increasing,

therefore lim
n
µ(Bn) = µ

(

⋃

n∈N

Bn

)

. We get also lim
n
βn = µ

(

⋃

n∈N

Bn

)

(

indeed, from

inequality βn − 1
2n 6 µ(Bn+1) 6 βn, n ∈ N, we get that

lim sup
n
βn 6 lim

n
µ(Bn) 6 lim inf

n
βn

which implies lim sup
n
βn = lim inf

n
βn, what means that the sequence {βn} is co-

nvergent and lim
n
βn = lim

n
µ(Bn)

)

. Therefore, since there is always βn 6 α we get

that µ
(

⋃

n∈N

Bn

)

6 α.

Suppose that µ
(

⋃

n∈N

Bn

)

< α. Let us define C := A \
⋃

n∈N

Bn. Then µ(C) > 0

and C, as a subset of the µ-atomless set is µ-atomless as well.
According to Lemma 4 there exists the µ-measurable set C0 ⊂ C such that

µ(C0) > 0 and α > µ(C0) + µ
(

⋃

n∈N

Bn

)

.



28 P. Lorenc, R. Wituła

Let us note that the following inclusions Bm ⊆ C0 ∪
⋃

n∈N

Bn ⊆ A are satisfied

for m ∈ N and because µ
(

C0 ∪
⋃

n∈N

Bn

)

< α, then from definition of numbers βn

we have µ
(

C0 ∪
⋃

n∈N

Bn

)

6 βn, n ∈ N which implies µ
(

C0∪
⋃

n∈N

Bn

)

6 lim
n
βn and

we obtain the contradiction. Therefore µ
(

⋃

n∈N

Bn

)

= α. �

Historical remark. Theorem 5 was proved in the first independently by Fich-
tenholz and Sierpiński (see [18, remark to problem 12]).

Corollary 6. Let A ∈ M be the same as in assumptions of the above theorem.

Then there exists a M-measurable partition {An}n∈N of set A such that

∀α ∈
(

0, µ(A)
)

∃{Ani}i∈N : µ
(

⋃

i∈N

Ani

)

= α.

Proof. It is sufficient to note that (see Lemma 7 below) if µ(A) < +∞ then there
exists the M-measurable partition {An}n∈N of set A such that

µ(An) 6
∑

i>n+1

µ(Ai), n ∈ N.

Indeed, by Theorem 5 there exists A1 ∈ M, A1 ⊂ A such that µ(A1) = 12µ(A).
The remaining sets are defined by the Axiom of Dependent Choices and on the
basis of Theorem 5 such that

An ∈M, An ⊂ A \
n−1
⋃

i=1

Ai, µ(An) =
1
2
µ
(

A \
n−1
⋃

i=1

Ai
)

, n ∈ N, n > 1.

�

Lemma 7 ([16]). Assume that
∑

an is a convergent series with nonnegative te-

rms such that an 6
∑

i>n+1

ai, n ∈ N. Then for every α ∈
(

0,
∑

an
)

the subseries
∑

ani exist, sum of which is equal to α.

Remark 8. Lemma 7 was also used in discussion of some facts in paper [23]. It
is worth to note that this result is an important part of contemporary discussed
problem concerning the description of subsums of given convergent series with
positive terms [3].
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Remark 9. Moreover, let us note that not only the discussed here atomless measu-
res have the interesting applications. In contrast, it is proven in papers [13,17,21]
that the following statements are equivalent.

(i) Lp(µ) ⊆ Lq(µ) for some pair p, q ∈ (0,∞) with p < q.

(ii) There exists a constant m > 0 such that µ(E) > m for every µ-non-null set
E ∈M.

(iii) Lp(µ) ⊆ Lq(µ) for every pair p, q ∈ (0,∞) with p 6 q.

We note that condition (ii) is equivalent to the statement saying that there exists
m > 0 such that each µ-non-null set E ∈M contains some µ-atom E′ ∈M with
µ(E′) > m.

Next theorem is our main result and it seems that it may have many different
applications (also technical).

Theorem 10. Let (Ω,M) be a measurable set and let µ1, . . . , µn be the nonnegative
and σ-additive measures on M. Suppose that the following condition is satisfied:

If E ∈M and 0 < µ1(E) = . . . = µn(E) < +∞
then for every α ∈

(

0, µ1(E)
)

there exists F ∈M ∩ P(E)
such that µ1(F ) = . . . = µn(F ) = α.

(1)

Then there exists a family of sets Vr ∈ M, r ∈ [0, µ1(E)] with the following
properties:































V0 = ∅, Vµ1(E) = E,

µ1(Vr) = . . . = µn(Vr) = r,

Vr ⊂ Vr′ ⇐⇒ r 6 r′,

Vr′ =
⋃

r<r′
Vr .

(2)

Besides, for each nonnegative and σ-additive measure µ on M the function

[0, µ1(E)] ∋ r
f
7−→ µ(Vr)

is left-continuous. If additionally µ(Vµ1(E)) <∞ and µ is absolutely continuous
with respect to one of the measures µi, then function f is continuous on interval

[0, µ1(E)].
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Proof. Replacing µj with
µj
µj(E)

we can assume, without loss of generality, that
µj(E) = 1 for every j = 1, . . . , n. First we define the sets V ∗i2−n , for i = 0, 1, . . . , 2

n

and n ∈ N, by induction on n ∈ N0.
Let us set V ∗0 = ∅ and V

∗

1 = E. Next, let us suppose that sets V
∗

i2−n have been
defined for all n = 0, 1, . . . , k and i = 0, 1, . . . , 2n such that

µ1(V ∗i2−n) = . . . = µn(V
∗

i2−n) = i2
−n,

and
V ∗i2−m ⊂ V

∗

j2−n ⇐⇒ i2
−m

6 j2−n.

Then we have
µ1(Ei) = . . . = µn(Ei) = 21−k

for every odd index i and sets

Ei := V ∗1
2
(i+1)21−k \ V

∗
1
2
(i−1)21−k .

By (1) there exists the M-measurable set Fi ⊂ Ei such that

µ1(Fi) = . . . = µn(Fi) = 2−k.

Let us put V ∗
i2−k = Fi ∪ V

∗
1
2
(i−1)21−k

for all odd i, 0 < i < 2k. Then

µj(V ∗i2−k ) = µj(Fi) + µj(V
∗
1
2
(i−1)21−k) = 2

−k +
1
2
(i− 1)21−k = i2−k

for every j = 1, . . . , n and V ∗
i2−k ⊂ V

∗

(i+1)2−k for each i = 0, 1, . . . , 2
k − 1. At last,

by the Principle of Mathematical Induction the sets V ∗
i2−k are defined for each

k ∈ N and i = 0, 1, . . . , 2k.
Now we set

Vr =
⋃

i2−n6r

V ∗i2−n

for every r ∈ (0, 1]. Moreover let V0 = ∅. We can easily verify that

µj(Vr) = sup
i2−n6r

{µj(V ∗i2−n)} = sup
i2−n6r

{i2−n} = r

and the sets Vr , r ∈ [0, 1], possess all other properties from (2). Now let µ be a po-

sitive measure onM. We want to prove that the function [0, µ1(E)] ∋ r
f
7−→ µ(Vr)

is continuous. Let us take rn, r′ ∈ [0, µ1(E)], n ∈ N, such that rn ր r′. Then
µ(Vr′) = µ

(

⋃

n∈N

Vrn

)

= lim
n→∞

µ(Vrn) which implies that µ(Vr′) = sup
r<r′
µ(Vr), i.e.
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f is left-continuous. If µ(Vµ1(E)) <∞ then for each sequence {rn} ⊂ [0, µ1(E)],
rn ց r′ we obtain

lim
n→∞
µ(Vrn) = µ

(

⋂

n∈N

Vrn

)

= µ
(

Vr′ ∪
(

⋂

n∈N

Vrn \ Vr′
)

)

. (3)

Since

µj

(

⋂

n∈N

Vrn \ Vr′
)

= µj
(

⋂

n∈N

Vrn

)

− µj(Vr′) =

= lim
n→∞
µj(Vrn)− µj(Vr′) = r

′ − µj(Vr′) = 0,

for every j = 1, . . . , n, so if µ is absolutely continuous with respect to one of
measures µj , then by (3) we get

lim
n→∞

µ(Vrn) = µ(Vr′)

which implies that µ(Vr′) = inf
r′<r
µ(Vr) and f is also the right-continuous function.

The proof is finished. �

Theorem 11. Let (Ω,M) be a measurable space and µ1, . . . , µn be the nonnegative
σ-additive measures on M. Assume that 0 < µ1(E) = . . . = µn(E) <∞ for some
E ∈ M. Then if E is a set which is atomless with respect to any of measures

µ1, . . . , µn, then for every α ∈
(

0, µ1(E)
)

there exists F ∈ M ∩ P(E) such that
µ1(F ) = . . . µn(F ) = α.

Proof. Case for n = 1 is proved by Theorem 5. Suppose now that theorem is true
for every n nonnegative measures on M and let µ1, . . . , µn, µ be the nonnegative
measures on M such that µ1(E) = . . . = µn(E) = µ(E) > 0 for some E ∈ M,
whereby µ1, . . . , µn, µ are atomless on E.
Replacing, if necessary, measure µ1 by measure 12 (µ1+µ) we may assume that

µ is absolutely continuous with respect to measure µ1.
We prove that for every r ∈

(

0, µ1(E)
)

there exists F ∈M ∩ P(E) such that
µ1(F ) = . . . µn(F ) = µ(F ) = r. First, we consider the case for r = 1

m
µ1(E),

m ∈ N. By the induction hypothesis we can divide E into M-measurable subsets
E1, . . . , Em such that µj(Ei) = r, j = 1, . . . , n and i = 1, . . . ,m.
Suppose that µ(Ei) 6= r for all indices i. After the possible renumbering we

may assume that µ(E1) < r < µ(E2). By Theorem 10 we can construct sets
Vt ∈M ∩ P(E1) and Wt ∈M ∩ P(E2), t ∈ [0, r], with the following properties
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













V0 =W0 = ∅, Vr = E1,Wr = E2,

Vt ⊂ Vt′ ∧ Wk ⊂Wk′ ⇐⇒ t 6 t′ ∧ k 6 k′,

µj(Vt) = µj(Wt) = t, j = 1, . . . , n.

Let us put G(t) = µ(Vt ∪ Wr−t), t ∈ [0, r]. From Theorem 10 we get that G
is a continuous function and because G(0) = µ(Wr) = µ(E2) > r and G(r) =
µ(Vr) = µ(E1) < r then there exists t0 ∈ (0, r) such that G(t0) = r. Thus

µ(Vt0 ∪Wr−t0) = r = t0 + (r − t0) = µj(Vt0 ∪Wr−t0).

Let us now consider the more general case with number r ∈
(

0, µ1(E)
)

. Let n1 be
the smallest natural number such that n−11 µ(E) < r. As shown above, there exists
X1 ∈M∩P(E) such that µ(X1) = µj(X1) = n−11 µ(E) for j = 1, . . . , n. Then it will
be also µ(E \X1) = µj(E \X1) for every j. Let n2 be the smallest natural number
such that n−12 µ(E \X1) < r − µ(X1). As above, there exists X2 ∈M∩P(E \X1)
such that µ(X2) = µj(X2) = n−12 µ(E \X1), j = 1, . . . , n. In addition let us note
that n−11 µ(E) >

r
2 and n

−1
2 µ(E \X1) >

1
2

(

r − µ(X1)
)

. Continuing the algorithm
of selecting the sets Xi we get in result the sequence of sets {Xi},M-measurable,
pairwise disjoint and such that

µ(Xi) = µj(Xi) = n−1i µ
(

E \
i−1
⋃

k=1

Xk

)

>
1
2

(

r − µ
(

i−1
⋃

k=1

Xk

)

)

for j = 1, . . . , n, which implies that for F =
⋃

i∈N

Xi we get µ(F ) = µj(F ) = r for

every j = 1, . . . , n. �

Theorem 12. Let M be a σ-algebra of subsets of set Ω 6= ∅ and µi : M→ R,

i = 1, . . . , n, be the σ-additive measures. If 0 < µ1(E) = µ2(E) = . . . = µn(E) for
some E ∈ M and set E is atomless with respect to measures µi, then for every

r ∈
(

0, µ1(E)
)

there exists the M-measurable subset F ⊂ E such that µ1(F ) =
. . . = µn(F ) = r.

Proof. Let us put

µ(A) = 2
n
∑

i=1

|µi|(A), νi(A) = µi(A) + µ(A), i = 1, . . . , n,



Darboux property. . . 33

for A ∈ M, where |µi| is the total variation of measure µi. It is easily to check
that µ and νi, i = 1, . . . , n, are simultaneously the nonnegative, finite, σ-additive
and atomless measures. Since ν1(E) = . . . = νn(E) > 0 then by Theorem 11 and
Theorem 10 there exist the sets Vt ∈M ∩ P(E) for t ∈ [0, ν1(E)] such that

V0 = ∅, Vν1(E) = E,
ν1(Vt) = . . . = νn(Vt) = t,
Vt′ ⊂ Vt ⇐⇒ t′ 6 t.

From inequality νj >
n
∑

i=1

|µi|, for j = 1, . . . , n, we get that measure µ is absolutely

continuous with respect to any measure νj . Hence, by Theorem 10 the function
t 7−→ µ(Vt) is continuous in interval [0, ν1(E)]. Now, from equalities µi(Vt) =
νi(Vt)− µ(Vt) = t− µ(Vt) and

µi(Vν1(E)) = ν1(E)− µ(Vν1(E)) = ν1(E)− µ(E) = µ1(E)

for i = 1, . . . , n, and from the Darboux property for continuous functions we may
conclude that for every r ∈

(

0, µ1(E)
)

there exists t(r) ∈
(

0, ν1(E)
)

such that

µ(Vt(r)) = r, i = 1, . . . , n.

�

Corollary 13 ([5]). Let (Ω,M) be a measurable space, let µ be a nonnegative
σ-additive measure on set M and let f1, . . . , fn ∈ L1(Ω,M, µ) be the nonnegative
functions. Suppose also that E ∈ M and µ is atomless on E. If

∫

E

f1dµ = . . . =
∫

E

fndµ > 0, then for every number r ∈
(

0,
∫

E

fjdµ
)

there exists a set F ∈ M,

F ⊂ E, such that r =
∫

F

f1dµ = . . . =
∫

F

fndµ.

Proof. If f ∈ L1(Ω,M, µ) then integral
∫

F

fdµ, treated as a function of set, is

a countably additive measure defined onM. Because measure µ is atomless on E,
we get that measure

∫

F

fdµ is also atomless on E (see [12]). Then we may apply

Theorem 12. �

Remark 14. Theorem 5 may be generalized, with the reduced proof, by applying
the Lyapunov Theorem (1940) [14] formulated below.
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Theorem 15. Let M be a σ-algebra of subsets of set Ω 6= ∅ and suppose that
(X, ‖·‖) is the finite dimensional normed vector space (and therefore complete) over
K = R∨C. Then for every atomless and countably additive measure m : M −→ X

the set m(M) is compact and convex.

The Lyapunov Theorem is a special case of the more general Knowles Theorem
(see [7] and [4] for generalizations). Moreover, the Lyapunov Theorem allows to
generalize Theorem 5 to the following form.

Theorem 16. Let M be a σ-algebra of subsets of set Ω 6= ∅ and let µi : M −→ K

(K = R ∨ C, 1 6 i 6 n) be the countably additive measures. Then for every E ∈M,

with respect to which all measures µi are atomless, and for each t ∈ [0, 1] there
exists a set F ∈M, F ⊂ E such that

µi(F ) = tµi(E), 1 6 i 6 n.

Proof. Assume that µ(A) :=
(

µ1(A∩E), . . . , µn(A∩E)
)

for A ∈M. Obviously µ :
M −→ Kn is countably additive, atomless measure, therefore set µ(M) is convex
by the Lyapunov Theorem where, in particular, we obtain that for every number
t ∈ (0, 1) there exists a set B ∈M such that µ(B) = (1− t)µ(∅) + tµ(E) = tµ(E),
i.e. µi(B ∩ E) = tµi(E), 1 6 i 6 n. �

Remark 17. Theorem 16 can be generalized in many ways. One of such generali-
zations can be obtained by applying the Dvoretsky, Wald and Wolfovitz Theorem
(see [2, 8]). Also the new extension of the Lyapunov Theorem to subranges given
by Dai and Feinberg in [6] can be consider here.

Remark 18. Stromquist and Woodall proved in [20] that for a given positive inte-
ger n, the non-atomic probability measures µ1, . . . , µn on I = [0, 1] and a number
α ∈ (0, 1) there exists a subset K of I such that µi(K) = α for every i = 1, . . . , n.
Moreover, K may be chosen to be a union of at most n intervals. If I is replaced
by S1 then for each α ∈ [0, 1] there exists a set K ⊆ S1 such that K is a union
of at mots n− 1 intervals and µi(K) = α for each i = 1, . . . , n. Furthermore, if α
is irrational or α = r

s
, r, s ∈ N, (r, s) = 1, s > n, then the number of intervals is

optimal.

Remark 19. We note that Theorem 16 is not true for the case of infinitely many
measures µi : M −→ K (see [5]).
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Final remark. Cater’s paper [5] gave the inspiration for some results obtained
by the young co-author and presented in this paper.
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Omówienie

W artykule omawiane jest uogólnienie klasycznego wyniku Fichtenholza-Sier-
pińskiego o własności Darboux σ-addytywnej nieujemnej miary bezatomowej na
skończenie wymiarowe miary wektorowe. Przedstawiono dwa różne dowody. Jeden,
ważny od strony technicznej, nawiązuje do słynnego lematu Uryshona z topologii.
Drugi dowód otrzymujemy łatwo z twierdzenia Lapunowa o zwartości i wypukłości
µ-obrazu σ-przestrzeni dla skończenie wymiarowej miary wektorowej µ. Prezen-
towane są różne powiązania i uogólnienia wykorzystywanych w artykule narzędzi
technicznych, co wypływało głównie z pobudek poznawczych.


