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1. Introduction

During the last 20 years, the interest in unmanned aerial vehic-
les has been growing because of their availability and sim-
plicity of control. One variety of unmanned aerial vehicles is 
a quadcopter. A quadcopter is an aircraft with four rotors. 
They are widespread, as evidenced by a large number of publi-
cations [1–17]. With such devices, one can produce photo and 
video recording, deliver small loads and perform other tasks 
for monitoring the Earth’s surface. To effectively perform these 
tasks, one needs to control the quadcopter precisely.

PD or PID – controllers [3, 5, 8–13], linear-quadratic con-
troller [1, 2], the model predictive control [3, 7], Backstepping 
Control [5, 6], Sliding Mode Control [5] and Inverse Control [2, 
5, 14], using neural networks [24] are the most popular control-
lers used for quadcopter control. There are also some adaptive 
algorithms for controlling a quadcopter [15–17].

The main disadvantage of most control algorithms is the 
lack of precise knowledge about quadcopter parameters such as 
weight quadcopter, inertia tensor, motors’ traction coefficient, 
aerodynamic coefficient, the distance from the quadcopter’s 
centre of mass to motors’ centres. In case of the real objects, 
such parameters may vary, when, e.g. propellers are replaced, 
or new equipment is added to the quadcopter. Also, for each 
quadcopter one needs to carry out the identification of para-
meters separately, which is a costly process. Therefore, in most 
cases, these parameters are determined with low accuracy. For 
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this reason, during flight, it is necessary to apply the methods 
of adaptive control.

The purpose of this paper is to provide an universal algori-
thm for quadcopter adaptive control along a given trajectory 
and to assess its effectiveness. This paper is a continuation of 
the work presented in [18–19]. Article [19] shows the degree 
of effective control’s dependence on the scope of accurate 
knowledge on the model parameters. The conclusion was that 
there was a need to develop such algorithms. This paper uses 
a more comprehensive mathematical model of an asymme-
tric quadcopter.

The paper consists of six sections. In the first section, the 
problem and the goal of its solution were formulated, and the 
advantages of the adaptive method are shown. The second 
section presents the mathematical model of an asymmetric 
quadcopterand the scheme of the control algorithm. The third 
section presents the wind model. The fourth section focuses 
on the adaptive control algorithm, in particular the method of 
identifying the model parameters. In the next section, presents 
the conditions in which the modeling was conducted, and the 
simulation results were obtained. In the last section, are pre-
sented the conclusions about the efficiency of the algorithm, 
and make recommendations for its use.

2.  Development of the Mathematical 
Model

The problem of motion control of a quadcopter along with 
a given trajectory has been solved according to the schema 
(Fig. 1).

A detailed description of the mathematical model of an 
asymmetric quadcopter (1) is presented in [18]. The equations 
in the form (2) relate angle speed of motor rotation with the 
driving force and moments. In Fig. 1 Uref = (Ur1, Ur2, Ur3, Ur0)T  
is a control obtained with control algorithms.
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where Vconst and Vrand are deterministic and stochastic compo-
nents of wind velocity, respectively:

Vconst = (Vconst,x, Vconst,y, Vconst,z)T and Vrand = (Vrand,x, Vrand,y, Vrand,z)T.

Deterministic and stochastic components can be represented 
as (6) and (7), respectively. The stochastic component is model-
led using Dryden differential equations. The choice and detailed 
description of the wind model is presented in [21, 23].
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where Vconst is wind velocity at altitude z, V0 is “friction velo-
city”, kkarman is Karman constant, kkarman = 0.38, z0 is layer thick-
ness of surface roughness.
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where x, y, z are unit vectors in the coordinate system asso-
ciated with the quadcopter, s is the intensity of turbulence,  
s  = (sx, sy, sz)T, L is spatial wavelengths, L = (Lx, Ly, Lz)T, Va 
is quadcopter velocity, W is white noise, W = (Wx, Wy, Wz)T.  
Parameters for the Dryden model of wind gusts are defined 
in MIL-F-8785C [22].

The resulting resistance force can be represented as (8):

 ( ),~~2
aaresres VsignV ⋅⋅= kF  (8)

where  is the velocity of the quadcopter relative to air mass, 
kres is the coefficient of resistance.

4. Identification and Control Algorithms

The choice of the control algorithm is an essential step in 
creating an autonomous control system. The analysis of con-
trol algorithms in [19, 20] showed that the control algorithms 
depend on the exact knowledge of the model parameters. Than 
the more complex the control algorithm and the mathematical 
model used that the more significant this effect is. It turns out 
that if the error value in the parameters is more than 15%; the 
most effective is the full state feedback method. Therefore, it 
is necessary to develop a control system that does not reduce 
control effectiveness when changing model parameters and ada-
pts to their changes.

In this paper, inverse dynamic, full state feedback method 
sand adaptive control were chosen. Using the chosen methods 
as an example, the efficiency of using the algorithm for the iden-
tification of model parameters in quadcopter control is shown. 
For all presented methods, the first step of the identification is 
the identification of mechanical motor parameters.

4.1. Identification of Motor Parameters
The presented algorithm of adaptive control can refine the 
parameters of the quadcopter model. However, in the litera-
ture, little attention is paid to identifying the parameters of 
quadcopters’ motors. These parameters depend on both the 
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(2)

where I is inertia tensor, Ω is angular velocity vector, Im is 
motors’ moment of inertia, ωi is i-th motor’s angular velocity 
of rotation, U = (U1, U2, U3, U0)T is control, M is quadcopter’s 
mass, X = (x, y, z)T is quadcopter’s centre of mass, 𝜼 = (j, q, y)T  
are Euler angles, Fres = (Fres,x, Fres,y, Fres,z)T is resistance force vec-
tor, G(𝜼) is matrix transformation between inertial and related 
coordinate systems, which has the form (3), Λ(𝜼) is transition 
matrix for the angular velocity, which has the form (4), k1 and 
k2 are constant coefficients, xi,c and yi,c are distances from the 
centre of the i-th motor to the quadcopter’s gravity centre for 
axes 0x and 0y, respectively.
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3. Wind Model

Movement of the quadcopter is strongly influenced by the wind, 
which is always present in the atmosphere. Usually, a quad-
copter flies at altitudes up to 100 m. According to [21, 23], 
the wind speed Vwind at such heights can be represented as(5):

 Vwind = Vconst + Vrand, (5)

Fig. 1. Block diagram of the simulated quadcopter
Rys. 1. Schemat blokowy symulowanego quadrocoptera
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mechanical characteristics of the engine and the shape and size 
of the blades. They directly affect the accuracy of the quadcop-
ter control. Therefore, it is necessary to develop an algorithm 
for identifying the parameters of the motors.

Complete identification of the quadcopter parameters in the 
regular mode in the form (1) and (2) cannot be performed 
with the help of the adaptive algorithm. This is because the 
inverse matrixin (16) degenerates and, as a consequence, the 
matrix Pk does not converge.

There are several ways to solve the problem of identifying the 
motor parameters.

The first way is at the start of the quadcopter realizes spe-
cial manoeuvres. This approach is better to use when speci-
fying the motor parameters; otherwise, the quadcopter can 
become uncontrollable. However, this approach will allow 
increasing the efficiency of control at each launch or in the 
process of flight.

The second method requires the creation of additional 
equipment for the motor calibration be for emounting on the 
quadcopter. This method can more accurately calibrate and 
determine the flaws of each motor.

Pressure sensors FSR-402, which depend on the connected 
resistance were used. In Fig. 3 are graphs of the dependence of 
the force applied to the sensors on its measurements.

Figure 4 shows a plot of the signal supplied to the motor from 
the traction force of the motor measured by the calibration 
device. As can be seen from Fig. 4, this characteristic is almost 

linear. Reducing the force at high engine speeds is caused by 
air flow turbulence and motor vibrations. This problem requires 
further investigation and isolation of the sensors. The proposed 
algorithm, along with the calibration device, identifies with high 
accuracy the traction force of the motor.

4.2. Inverse Dynamics
This method is presented in detail in [18, 19, 23]. Let us 
describe only the implementation features for the chosen model 
of a quadcopter.

The method of inverse dynamics is based on finding the desi-
red values of the forces and moments of motors based on a given 
the trajectory of motion and a known mathematical model of the 
object. In this case, the trajectory of motion was set by the cen-
tre of mass of the quadcopter  and one orientation angle ytr.

On the given trajectory of motion, the desired linear and cir-
cular accelerations of the quadcopter are determined as (9, 11). 
Additional members are necessary to give the control algorithm 
stability and continuity. And full state vector can be determined 
from the accelerations and the trajectory, like (10, 11)

  (9)

 

 (10)

 

  (11)

 

where C1, C2 are matrixes of known feedback coefficients;  
C3, C4 are known feedback coefficients, Fres is resistance force, 
c• = cos(·), s• = sin(·).

Knowing the desired state vector of a quadcopter at any 
time on the chosen trajectory, the control vector was deter-
mined as (12–13).
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Fig. 2. Equipment for calibrating of motors
Rys. 2. Osprzęt do kalibracji silników

Fig. 3. Dependence of the sensor measurements on the force of 
pressure and resistance in the measurement circuit
Rys. 3. Zależność pomiarów wartości z czujnika od nacisku na czujniki 
i rezystancji w obwodzie pomiarowym

Fig. 4. Dependence of the supplied signal on the motor traction, 
values from 1200 to 2000 describe the controls
Rys. 4. Zależność dostarczonego sygnału od trakcji silnika, wartości od 
1200 do 2000 opisują sterowanie
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4.3. Full State Feedback
The full state feedback method is described in detail and is 
presented in [18, 19, 23]. Its hould be noted that this method 
is applied to the linear model, which can be obtained from 
(2) by full linearisation. Such models are presented in [18, 19]. 
The control algorithm for this method can be written as (14).
      

 

 
   
  

(14)

where pi,j, ∀i, j: i = 1, .., 4; j = 0, .., 3 are feedback coefficients.

4.4. Adaptive Control
The control algorithm based on the inverse dynamics is essen-
tially not linear from the state vector and the parameters of 
the quadcopter model. A full state feedback method is linear 
from the state vector and the model parameters. Therefore, for 
significant errors in measuring the state vector or the values of 
the model parameters, the efficiency of the inverse dynamics 
method is significantly impaired in comparison with the full 
state feedback method. To solve this problem, it is necessary 
to develop an adaptive control algorithm for the quadcopter.

The following assumptions have been made. The model para-
meters are not changing over time. They can only be changed 
between runs and taken into account that it is necessary to 
analyse a large amount of information received to identify the 
model. Therefore, a recursive method to identify the model 
parameters has been selected [20].

Definable parameters are the inertia tensor and the quad-
copter’s mass Φ = (Ix, Ixy, Ixz, Iy, Iyz, Iz, M)T. The general form 
of the equation (1) can be written as (15).The identification 
algorithmis presented in the form of (16–18) with the initial 
conditions as in (19).

 Uk = Γk · Φ, (15)
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 Φk = Φk-1 + Lk-1(Uk-1 – Γk-1 · Φk-1) (18)

 P0 = 105 · E,  Φ0 = 0 · E (19)

where Uk is control, Γk is a matrix of the model’s identifica-
tion a system, Lk is a matrix of identification coefficients, Pk 
is a matrix of algorithm convergence estimates, Φk is an esti-
mation of model parameters, 𝜆 is an adaptation parameter, 
𝜆 = 0.95, E is the identity matrix and k stands for indivi-
dual iterations.

5. Simulation

To effectively identify the model parameters for a quadcopter, 
described in the previous chapter, it is necessary to perform 
such manoeuvres that would reveal all parameters. For this 
reason, a quite aggressive “eight-shape” manoeuvre was cho-

sen. Figure 5 shows an example of the quadcopter’s movement 
along the trajectory. The trajectory consisted of two parts. In 
the first part, during the 0.1 s the quadcopter did not move 
and remained at a given point. In the second part, the quad-
copter performed manoeuvres.

The simulation results are presented in Figs. 6−11.  
The angular rotation speed of the i-th motor was limited to 
150 < ωi < 500, i = 1, …, 4. The model parameters are:

M = 0.7 [kg]  Im = 10−3 [kg·m2]  g = 9.8 [m/s2]

k1 = 7.426 ×10−5 [kg ×m2]  k2 = 1.485 ×10−5 [kg·m]

The identification of quadcopter’s parameters for asymme-
try of the construction is made when the robot is take-off. The 
hardest ones to identify are the deviation moments of inertia. 
This because the absolute value of these elements is several 
orders lower than the principal moments of inertia and their 
impact becomes insignificant in the quadcopter’s movement. 
The maximum identification error of the mass and principal 
moments of inertia is less than 1%, and the modulus of the 
inertia metric is less than 5% (Figs. 6, 7).

Fig. 5. The motion path of the quadcopter
Rys. 5. Trajektoria ruchu quadrocoptera

Fig. 6. The error identification of the moment of inertia for z axis
Rys. 6. Identyfikacja błędu dla momentu bezwładności dla osi z
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Simulations were performed to verify the effectiveness of the 
chosen control method. Figures 8 and 9 show the dependence 
of the model parameters’ error on the standard deviation of the 
quadcopter’s centre of mass along a given trajectory of move-
ment. The results have been obtained for the inverse dynamics 
method. For the full state feedback method, the results are 
similar. Figures 8 and 9 show that the adaptive control method 
works effectively even for the range of the model parameters’ 
errors between –40% and 80% without using additional special 
manoeuvres at the start.

Fig. 7. The identification error of the moment of inertia tensor norm
Rys. 7. Identyfikacja błędu momentu bezwładności dla tensora momentu 
bezwładności

Fig. 8. The standard deviations of the error of the model parameters 
for the inverse dynamics method
Rys. 8. Odchylenia standardowe błędu parametrów modelu dla metody 
dynamiki odwrotnej

Fig. 9. The standard deviations of the error of the model parameters 
for a full state feedback method
Rys. 9. Standardowe odchylenia błędu parametrów modelu dla metody 
przesuwania biegunów

Fig. 10. The convergence of the identification algorithm for the 
diagonal element of the P matrix
Rys. 10. Zbieżność algorytmu identyfikacji dla elementu diagonalnego 
macierzy P

Fig. 11. The convergence of the identification algorithm for the non-
diagonal element of the P matrix
Rys. 11. Zbieżność algorytmu identyfikacji dla elementu niediagonalnego 
macierzy P

Figures 10 and 11 show the dependence between the dia-
gonal and the not diagonal elements of the convergence 
matrix P, respectively. Results are presented in absolute 
values of alogarithmic scale. For the remaining elements of 
the matrix P relationship is similar. Figures 10 and 11 confirm 
the reliability and performance of the identification algorithm.

6. Conclusions

In the paper, the problem of adaptive control quadcopter move-
ment along the predetermined path was solved. For testing 
the control algorithm, an asymmetric quadcopter model was 
used. Recurrent adaptation method had been selected based 
on the inverse dynamics and full state feedback method. Both 
approaches have demonstrated their effectiveness and have 
approximately the same results. However, the inverse dynamics 
method performs best for aggressive manoeuvres. A full state 
feedback method, in turn, performs best at the initial stage of 
adaptation, when the parameters of the model are known with 
low accuracy or some parameter is unknown.

As simulation results show, an adaptive algorithm can signi-
ficantly improve the quality of control and the standard devia-
tion from the desired path. In the future, authors are planning 
the analyse of the impact of sensor errors on control efficiency.
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Streszczenie: W pracy przedstawiono algorytm sterowania adaptacyjnego dla asymetrycznego 
quadrocoptera. W celu określenia sterowania zrealizowano identyfikację parametrów i przedstawiono 
algorytm identyfikacji w formie metody rekurencyjnej. Metoda sterowania realizowana jest 
z wykorzystaniem dynamiki odwrotnej, przesuwania biegunów oraz sterowania adaptacyjnego. 
Zaprezentowano algorytmy identyfikacji parametrów modelu quadrocoptera w trybie off-line i on-line. 
W artykule przedstawiono skuteczność wybranych algorytmów na przykładzie ruchu wzdłuż podanej 
trajektorii. Na zakończenie artykułu przedstawiono zalecenia dotyczące stosowania różnych metod 
sterowania. 

Słowa kluczowe: quadrocopter, sterowanie adaptacyjne, odwrotna dynamika, przesuwanie biegunów, wiatr

Opracowanie sterowania adaptacyjnego dla quadrocoptera 
asymetrycznego

Ryszard Beniak, DSc, PhD
r.beniak@po.edu.pl
ORCID: 0000-0002-9554-489X

Received the MSc. degree from the Opole 
University of Technology, Poland, and the 
PhD degree from Silesian University of Tech-
nology, Gliwice, Poland, in 1986 and 1993 
respectively. In 2014 he became an associate 
professor at the Opole University of Techno-
logy. Professional interests concern: model-
ling and simulations of converter drives, 
identification methods, modelling and con-
trol of mobile robotic systems and modern 
methods for integration of ordinary differen-
tial equations.

35

Ryszard Beniak, Oleksandr Gudzenko




