PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Study on the Water Vapour Permeability of Textile by a Standard and Novel device

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermo-physiological properties are very much connected to water vapour and air permeability. There are multiple standards with different working principles to determine the exact performance of any textile material. However, most of these tests are time-consuming and work on the steady state principle, whereas few devices work on heat flux, where results can be obtained much more quickly. The research article covers the testing of 8 unique shirt samples on these devices compared that on a novel device created by the author to see how much the results differ from each other. Lastly, a theoretical approach was used to determine any correlation between air permeability and water vapour permeability. The research work helps in understanding the working of different devices used for water vapour permeability and allows a reduction in time by using a predictive approach with just the results from the air permeability machine.
Rocznik
Strony
59--64
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Technical University of Liberec, Faculty of Textile, Department of Clothing, Czech Republic
  • Technical University of Liberec, Faculty of Textile, Department of Clothing, Czech Republic
autor
  • Technical University of Liberec, Faculty of Textile, Department of Clothing, Czech Republic
  • National Textile University, School of Engineering and Technology, Department of Textile Engineering Technology, Faisalabad, Pakistan
autor
  • Technical University of Liberec, Faculty of Textile, Department of Clothing, Czech Republic
Bibliografia
  • 1. Slater K. Comfort Properties of Textiles. Text. Prog 1977; 9: 1-42.
  • 2. Slater K. The Assessment of Comfort. J. Text. Inst 1986; 77: 157-171.
  • 3. Kothari VK. Thermo-Physiological Comfort Characteristics and Blended Yarn Woven Fabrics. Indian Journal of Fibre and Textile Research 2006; 31(1): 177-186.
  • 4. Das A, Alagirusamy R. Moisture Transmission, Chapter in Science in Clothing Comfort. Woodhead Publishing 2010; 124-130.
  • 5. Li Y. The Science of Clothing Comfort. Textile Progress 2001; 31: 1-135.
  • 6. Zhang P, Watanabe Y, Kim SH, Tokura H, Gong RH. Thermoregulatory Responses to Different Moisture-Transfer Rates of Clothing Materials During Exercise. J. Text. Inst 2001; 92: 372-378.
  • 7. Das A, Ishtiaque SM. Comfort Characteristics of Fabrics Containing TwistLess and Hollow Fibrous Assemblies in Weft. The Journal of Textile and Apparel, Technology and Management 2004; 3(4): 1-7.
  • 8. Ozdemir H. Thermal Comfort Properties of Clothing Fabrics Woven with Polyester/Cotton Blend Yarns. AUTEX Research Journal 2017; 17(2): 135-141, DOI:10.1515/aut-2016-0012.
  • 9. Holcombe BV, Hoschke BN. Dry Heat Transfer Characteristics of Underwear Fabrics. Textile Res. J 1983; 53: 368-374.
  • 10. Dias T. Delkumburewatte GB. The Influence of Moisture Content on the Thermal Conductivity of a Knitted Structure. Meas Sci Technol 2007; 18: 1304-1314.
  • 11. Monego CJ, Golub SJ. Insulating Values of Fabrics, Foams and Laminates. Am. Dyest.Rep 1963; 52: 21-32.
  • 12. Kyunghoon M, Yangsoo S, Chongyoup K, Yejin L, Kyunghi H. Heat and Moisture Transfer from Skin to Environment through Fabrics: A Mathematical Model. Int J Heat Mass Transfer 2007; 50: 5292-5304.
  • 13. Geraldes MJ, Hes L, Araujo M. Mathematical Modelization of Thermal Properties in Functional Knit Structures. In: Proceedings of the 83rd Textile-Institute World Conference, Shanghai, China, 23-27 May 2004.
  • 14. Haghi AK. Heat and Mass transfer in textiles. WSEAS press Montreal 2011; 296-97.
  • 15. Oglakcioglu N, Marmarali A. Thermal Comfort Properties of Some Knitted Structures. FIBRES & TEXTILES in Eastern Europe 2007; 15, 5-6 (64-65): 94-96.
  • 16. Gibson PW. Effect of Temperature on Water Vapor Transport through Polymer Laminates. Journal of Polymer Testing 2000; 19: 673-691.
  • 17. Qu J, Ruckman J. A New Calculation Method of Water Vapour Permeability at Unsteady States. Journal of the Textile Institute 2006; 97: 449-453.
  • 18. Das B, Das A, Kothari V, Fanguiero R, Araujo M. Moisture Transmission through Textiles, Part 1: Process Involved in Moisture Transmission and the Factors at Play. AUTEX Research Journal 2007; 7: 100-109.
  • 19. Das B, Das A, Kothari V, Fanguiero R, Araujo M. Moisture Transmission through Textiles, Part II: Evaluation Methods and Mathematical Modeling. AUTEX Research Journal 2007; 7: 194-216.
  • 20. Skenderi Z, Cubric I, Srdjak M. Water Vapour Resistance of Knitted Fabrics Under Different Environmental Conditions. FIBERS & TEXTILES in Eastern Europe 2009; 17, 2(73): 72-75.
  • 21. Ramkumar S, Purushothaman A, Hake K, McAlister D. Relationship between Cotton Varieties and Moisture Vapor Transport of Knitted Fabrics. Journal of Engineered Fibers and Fabrics 2007; 2: 10-18.
  • 22. Huang J. Sweating guarded hot plate test method. Journal of Polymer testing 2006; 25: 709-716.
  • 23. Matusiak M. Investigation of the thermal insulation properties of multilayer textiles. Fibr Textil East Eur 2004; 14: 98-102.
  • 24. Hes L. Effect of planar conduction of moisture on measured water vapor permeability of thin woven Fabrics. The Fiber Society Fall Technical Meeting, Natick, Massachusetts, 2007; 9.
  • 25. Lay L, Fan J, Siu T and Siu LYC. Comfort Sensations of Polo Shirts With and Without Wrinkle-free Treatment, Textile Res. J. 72(11), 949-953 (2002).
  • 26. Pac MJ, Bueno MA, Renner M. Warm-cool feeling relative to tribological properties of fabrics. Textil Res J 2001; 71: 806-812.
  • 27. Wong ASW, Li Y, Yeung PKW and Lee PWH. Neural Network Predictions of Human Psychological Perceptions of Clothing Sensory Comfort, Textile Res. J. 73(1), 31-37 (2003).
  • 28. Ren YJ and Ruckman JE. Condensation in three-layer waterproof breathable fabrics for clothing. Int J Clothing Sci and Tech 2004; 16: 335-347.
  • 29. McCullogh EA, Kwon M and Shim HA. Comparison of standard methods for measuring water vapor permeability of fabrics. Meas. Sci. Technol 2003; 14: 1402-1408.
  • 30. Havenith G, Holmer I, Hartog EAD, Pasrons KC. Clothing evaporative heat resistance – proposal for improved representation in standards and models, Ann OccupHyg43, 1999, 339-346.
  • 31. Congalton D. Heat and moisture transport through textiles and clothing ensembles utilizing the “Hohenstein” skin model. J Coated Fabrics 1999; 28: 183-196.
  • 32. Fan J, Chen Y. Measurement of Clothing Thermal Insulation and Moisture Vapor Resistance Using a Novel Perspiring Fabric Thermal Manikin. J. Meas. Sci. Technol. 2002; 13(7), 1115-1123.
  • 33. Gibson P, Kendrick C, Rivin D, Sicuranza L. An Automated Water Vapor Diffusion Test Method for Fabrics Laminates and Films. J Coated Fabrics 1995; 24: 322-345.
  • 34. Berger X, Sari H. A New Dynamic Clothing Model. Part 1: Heat and Mass Transfers. Int J Therm Sci 2000; 39: 673-683.
  • 35. Huang J, Qian X. A New Test Method for Measuring the Water Vapor Permeability of Fabrics. Measurement Science and Technology 2007; 18: 3043-3047.
  • 36. Zhang C, Wang X, Lv Y, Ma J, Huang J. A New Method for Evaluating Heat and Water Vapor Transfer Properties of Porous Polymeric Materials. Polymer Testing 2010; 29: 553-557.
  • 37. Wilson CA, Laing RM, Niven BE. Multi-Layer Bedding Materials and the Effect ofAir Spaces on ‘Wet’Thermal Resistance of Dry Materials. J Hum Environ Syst 2000; 4: 2000, 23-32.
  • 38. Rossi RM, Gross R, May H. Water Vapor Transfer and Condensation Effects in Multilayer Textile Combinations. Text Res J 2004; 74: 1-6.
  • 39. Holmer I. Thermal Manikin History and Application. European Journal of Applied Physiology 2004; 92: 614-618.
  • 40. Richards MGM, Psikuta A, Fiala D. Current Development of Thermal Sweating Manikins at Empa, Sixth International Thermal Manikin and Modeling Meeting (6i3m 2006; Hong Kong Polytechnic University: 173-179.
  • 41. Fan J, Chen YS. Measurement of Clothing Thermal Insulation and Moisture Vapor Permeability Using a Novel Perspiring Fabric Thermal Manikin. Measurement Science and Technology 2002; 13: 1115-1123.
  • 42. Fan J. Recent Developments and Applications of Sweating Fabric Manikin – “Walter”, Sixth International Thermal Manikin and Modelling Meeting (6i3m) 2006; Hong Kong Polytechnic University: 202-209.
  • 43. Fan J, Qian X. New Functions and Applications of Walter, the Sweating Fabric Manikin, Eur. J. Appl. Physiol. 2004; 92(6), 641-644.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99d441d3-d304-40ee-8012-6fb378a0cb39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.