PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study and numerical simulation of the water entry of a ship-like symmetry section with an obvious bulbous bow

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A bulbous bow is a typical ship structure. Due to the influence of the bulbous bow, complex flow separation and gas capture phenomena may appear during the water entry of ship-like sections. In this paper, experimental and numerical studies on the water entry of a ship-like section with an obvious bulbous bow are carried out. Two thin plates are installed at both ends of the test model to ensure that the flow field during the impact process is approximately twodimensional. The free-fall drop test is carried out in the test rig equipped with guide rails. By changing drop heights, impact pressure on the model surface with different initial impact velocities is measured. A numerical model for simulating the water entry of the ship-like section is established by using the Computational Fluid Dynamics (CFD) method, based on the Navier-Stokes equations. Reasonable time steps and mesh size are determined by convergence analysis. Four different flow models are used in the numerical analysis. It is found that the K-Epsilon turbulence model can present the most reasonable numerical prediction by comparing numerical results with the experimental data. Furthermore, the influence of the bulbous bow on the impact loads is numerically studied by using the validated numerical model. It suggests that the bulbous bow has little effect on the impact force acting on the bow-flared area but, in the position near the bulbous bow, the pressure will be affected by the second slamming and the air cushion.
Rocznik
Tom
Strony
16--34
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Bibliografia
  • 1. S.E. Hirdaris, W. Bai, D. Dessi, et al., “Loads for use in the design of ships and offshore structures”, Ocean Engineering. 2014. Vol. 78, 131-174, doi: 10.1016/j.oceaneng.2013.09.012.
  • 2. J. JIAO, H. REN, C. CHEN. Model Testing for Ship Hydroelasticity: A Review and Future Trends[J]. Journal of Shanghai Jiao Tong University (Science), 2017, 22(6): 641-650.
  • 3. J. Jiao, H. Yu, C. Chen, et al., “Time-domain numerical and segmented model experimental study on ship hydroelastic responses and whipping loads in harsh irregular seaways”, Ocean Engineering. 2019. Vol. 185, 59-81, doi: 10.1016/j. oceaneng.2019.05.039.
  • 4. S.Y. Sun, H.L. Chen, and G. Xu, “ Water Entry of A Wedge Into Waves in Three Degrees Offreedom”, Polish Maritime Research. 2019. Vol. 26(1), 117-124, doi:10.2478/ pomr-2019-0013.
  • 5. T. Von Karman, “ The impact on seaplane floats during landing”, NACA Technical note no.321,1929.
  • 6. H.Wagner, “ Uber Stoss- und Gleitvorgange an der Oberflache von Flussigkeiten. “ZAMM, 12, 193–215,1932.
  • 7. Z. Dobrovol’skaya “On some problems of similarity flow of fluid with a free surface”, Journal of Fluid Mechanics. 1969. Vol. 36, 805-829, doi: 10.1017/S0022112069001996.
  • 8. R. Zhao and O. Faltinsen, “Water entry of two-dimensional bodies”, Journal of Fluid Mechanics. 1993. Vol. 246, 593- 612, doi: 10.1017/S002211209300028X.
  • 9. J. Wang and O.M. Faltinsen, “Improved numerical solution of Dobrovol’skaya’s boundary integral equations on similarity flow for uniform symmetrical entry of wedges”, Applied Ocean Research. 2017. Vol. 66, 23-31, doi: 10.1016/j. apor.2017.05.006.
  • 10. A. Kamath, H. Bihs, and O.A. Arntsen, “Study of Water Impact and Entry of a Free Falling Wedge Using Computational Fluid Dynamics Simulations”, Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme. 2017. Vol. 139(3), doi: 10.1115/1.4035384.
  • 11. E.M. Yettou, A. Desrochers, and Y. Champoux, “Experimental study on the water impact of a symmetrical wedge”, Fluid Dynamics Research. 2006. Vol. 38(1), 47-66, doi: 10.1016/j.fluiddyn.2005.09.003.
  • 12. M. Jalalisendi, S. Zhao, and M. Porfiri, “Shallow water entry: modeling and experiments”, Journal of Engineering Mathematics. 2017. Vol. 104(1), 131-156, doi: 10.1007/ s10665-016-9877-3.
  • 13. R. Panciroli, A. Shams, and M. Porfiri, “Experiments on the water entry of curved wedges: High speed imaging and particle image velocimetry”, Ocean Engineering. 2015. Vol. 94, 213-222, doi: 10.1016/j.oceaneng.2014.12.004.
  • 14. P. Yu, H. Li, and M.C. Ong, “Numerical study on the water entry of curved wedges”, Ships and Offshore Structures. 2018. Vol. 13(8), 885-898, doi: 10.1080/17445302.2018.1471776.
  • 15. M. Barjasteh, H. Zeraatgar, and M.J. Javaherian, “An experimental study on water entry of asymmetric wedges”, Applied Ocean Research. 2016. Vol. 58, 292-304, doi: 10.1016/j.apor.2016.04.013.
  • 16. Y. Chen, T. Khabakhpasheva, K.J. Maki, et al., “Wedge impact with the influence of ice”, Applied Ocean Research. 2019. Vol. 89, 12-22, doi: 10.1016/j.apor.2019.05.001.
  • 17. J. Aarsnes. “Drop test with ship sections - effect of roll angle”, Report 603834.00.01. Norwegian Marine Technology Research Institute, Trondheim, Norway, 1996.
  • 18. R.Zhao, O.M. Faltinsen and J. Aarsnes. “Water entry of arbitrary two-dimensional sections with and without flow separation”, Proceedings of the 21st symposium on naval hydrodynamics, Trondheim, Norway, National Academy Press, Washington, DC, USA, 1996.
  • 19. H. Sun and O.M. Faltinsen, “Water entry of a bow-flare ship section with roll angle”, Journal of Marine Science and Technology. 2009. Vol. 14(1), 69-79, doi: 10.1007/ s00773-008-0026-1.
  • 20. X. Zhu, O.M. Faltinsen, C. Hu .”Water entry loads on heeled ship sections”. In: Proc. 16th Int Conf Hydrodyn Ship Design, Gdansk, Poland, 2005.
  • 21. S. Wang and C. Guedes Soares, “Slam induced loads on bowflared sections with various roll angles”, Ocean Engineering. 2013. Vol. 67, 45-57, doi: 10.1016/j.oceaneng.2013.04.009.
  • 22. H. Xie, H. Ren, H. Li, et al., “Numerical prediction of slamming on bow-flared section considering geometrical and kinematic asymmetry”, Ocean Engineering. 2018. Vol. 158, 311-330, doi: 10.1016/j.oceaneng.2018.04.033.
  • 23. MOERI. Wave Induced Loads on Ships. Technical Report No BSPIS7230-10306-6. Maritime Ocean Engineering Research Institute, Daejeon, Korea ,2013.
  • 24. Y. Kim, K.-K. Yang, J.-H. Kim, et al., “Study of Water-entry Impact of Wedge and Ship-like Section Using Potential Theories and CFD”, International Journal of Offshore and Polar Engineering. 2017. Vol. 27(2), 168-176, doi: 10.17736/ ijope.2017.jc670.
  • 25. L. Yang, H. Yang, S. Yan, et al., “Numerical Investigation of Water-Entry Problems Using IBM Method”, International Journal of Offshore and Polar Engineering. 2017. Vol. 27(2), 152-159, doi: 10.17736/ijope.2017.jc687.
  • 26. J. Park, J.H. Choi, H.-h. Lee, et al., “Experimental study on the effects of stern bulb arrangement on the slamming load”, International Journal of Naval Architecture and Ocean Engineering. 2020. Vol. 12, 518-530, doi: 10.1016/j. ijnaoe.2020.03.006.
  • 27. B. Guzel and F.C. Korkmaz, “ Reducing Water Entry Impact Loads on Marine Structures by Surface Modification”, Brodogradnja. 2020. Vol. 71(1), 1-18, doi: 10.21278/ brod71101.
  • 28. H. Luo, H. Wang, and C. Guedes Soares, “Numerical and experimental study of hydrodynamic impact and elastic response of one free-drop wedge with stiffened panels”, Ocean Engineering. 2012. Vol. 40, 1-14, doi: 10.1016/j. oceaneng.2011.11.004.
  • 29. D. Van Nuffel, K.S. Vepa, I. De Baere, et al., “Study on the Parameters Influencing the Accuracy and Reproducibility of Dynamic Pressure Measurements at the Surface of a Rigid Body During Water Impact”, Experimental Mechanics. 2013. Vol. 53(2), 131-144, doi: 10.1007/s11340-012-9619-z.
  • 30. B. Zhang, “ Research on Ship Hull Optimisation of HighSpeed Ship Based on Viscous Flow/Potential Flow Theory “, Polish Maritime Research. 2020. Vol. 27(1), 18-28, doi: 10.2478/pomr-2020-0002.
  • 31. L.-F. Hu, H. Qi, Y. Li, et al., “The CFD Method-Based Research on Damaged Ship’s Flooding Process in TimeDomain”, Polish Marit. Res., vol. 26, no. 1, 2019, doi: 10.2478/pomr-2019-0009.
  • 32. H. Nguyen Thi Ngoc, B. Vu Ngoc, T. Tran Ngoc, et al.,” Numerical Investigating the Effect of Water Depth on Ship Resistance Using RANS CFD Method”, Polish Marit. Res., vol. 26, no. 3, 2019, doi: 10.2478/pomr-2019-0046.
  • 33. Q. Wang, B. Zhang, P. Yu, et al., “Numerical Investigation on the Water Entry of Several Different Bow-Flared Sections”, Applied Sciences-Basel. 2020. Vol. 10(22), doi: 10.3390/app10227952.
  • 34. S. Johannessen, “Use of CFD to Study Hydrodynamic Loads on Free-Fall Lifeboats in the Impact Phase: A Verification and Validation Study,” M.Sc. Thesis, Norwegian University of Science and Technology, 2012.
  • 35. R.N. Bilandi, S. Jamei, F. Roshan, et al., “Numerical simulation of vertical water impact of asymmetric wedges by using a finite volume method combined with a volumeof-fluid technique”, Ocean Engineering. 2018. Vol. 160, 119-131, doi: 10.1016/j.oceaneng.2018.04.043.
  • 36. A. Bereznitski, Slamming: The role of hydroelasticity [J]. Int Shipbuild Progr,2001,48(4):333-351.
  • 37. S.-L. Chuang, “Experiments on Slamming of WedgeShaped Bodies”, Journal of Ship Research. 1967. Vol. 11, 190-198, doi: 10.5957/jsr.1967.11.3.190.
  • 38. O.A. Hermundstad and T. Moan, “Numerical and experimental analysis of bow flare slamming on a Ro-Ro vessel in regular oblique waves”, Journal of Marine Science and Technology. 2005. Vol. 10(3), 105-122, doi: 10.1007/ s00773-005-0192-3.
  • 39. J.-H. Kim, Y. Kim, R.-H. Yuck, et al., “Comparison of slamming and whipping loads by fully coupled hydroelastic analysis and experimental measurement”, Journal of Fluids and Structures. 2015. Vol. 52, 145-165, doi: 10.1016/j. jfluidstructs.2014.10.011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99d3df98-8d17-4923-813e-235c0fea7946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.