PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CBRN threats to Ukraine during the russian aggression: mitigating chemical hazards during wartime – countermeasures and decontamination strategies for Ukraine in light of potential chemical facility destruction

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zagrożenia CBRN na Ukrainie podczas agresji rosyjskiej: zwalczanie zagrożeń chemicznych w czasie wojny – środki przeciwdziałania i strategie dekontaminacji dla Ukrainy w świetle potencjalnego zniszczenia obiektów chemicznych
Języki publikacji
EN
Abstrakty
EN
This scientific paper investigates the potential threats posed by the release of Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs) due to possible destruction of chemical facilities in Ukraine during wartime. It presents an in-depth discussion of the risks, countermeasures and decontamination strategies, focusing on the application in resource-constrained settings. This study aims to contribute to the understanding of chemical disaster management and the development of effective countermeasures.
PL
Niniejszy artykuł w dziedzinie bezpieczeństwa analizuje potencjalne zagrożenia wynikające z uwolnienia czynników wojny chemicznej (CWA) oraz toksycznych przemysłowych chemikaliów (TIC) w wyniku ewentualnego zniszczenia obiektów chemicznych na Ukrainie w czasie wojny. Prezentuje dogłębną dyskusję na temat ryzyka, środków przeciwdziałania oraz strategii dekontaminacji, skupiając się na zastosowaniu w warunkach ograniczonych zasobów. Celem tego badania jest przyczynienie się do zrozumienia zarządzania katastrofami chemicznymi oraz rozwoju skutecznych środków przeciwdziałania.
Rocznik
Tom
Strony
165--180
Opis fizyczny
Bibliogr. 67 poz.
Bibliografia
  • 1. Tomassoni, A.J., French, R.N.E., Walter, F.G., (2015). Toxic industrial chemicals and chemical weapons: exposure, identification, and management by syndrome. Emerg Med Clin North Am., Feb;33(1):13–36.doi: 10.1016/j.emc.2014.09.004. Epub 2014 Nov 15.
  • 2. Ganesan, K., Raza, S.K., and Vijayaraghavan, R., (2010), Chemical warfare agents. J Pharm Bioallied Sci. Jul-Sep, 2(3), 166–178.
  • 3. Ivanenko, O., (2020). Implementation of risk assessment for critical infrastructure protection with the use of risk matrix. Sience Rise, No. 2 (67). 26–38.
  • 4. Levy, B.S., & Bissell, R.A., (2013). Terrorism and Public Health: A Balanced Approach to Strengthening Systems and Protecting People. Oxford University Press.
  • 5. Sidell, F.R., Takafuji, E.T., & Franz, D.R. (1997). Medical aspects of chemical and biological warfare. Washington: United States Government Printing.
  • 6. Okumura, T., Suzuki, K., Fukuda, A., Kohama, A., & Takasu, N., (1998). The Tokyo Subway Sarin Attack: Disaster Management, Part 1: Community Emergency Response. Academic Emergency Medicine, 5(6), 557–653.
  • 7. Hincal, F., & Erkekoglu, P., (2006). Toxic Industrial Chemicals (TICs) – Chemical Warfare Without Chemical Weapons. FABAD J. Pharm. Sci., 31, 220–229.
  • 8. Price, R.M., (1997). The Chemical Weapons Taboo. New York: Cornell University Press.
  • 9. Pitz, D., Lee, C., Kasprzyk-Hordern, B., Campo, P., Fenner, K., & Hollender, J., (2015). Characterisation of the ecotoxicity of hospital effluents: A review. Chemosphere, 45(5), 600–612.
  • 10. Broughton, E., (2005). The Bhopal disaster and its aftermath: a review. Environmental Health, 4, 6.
  • 11. Patwary, M.A. & O’Hare, W.T., (2011). Assessment of occupational and environmental safety associated with medical waste disposal in developing countries: A qualitative approach. Safety Science, 49(8–9), 1200–1207.
  • 12. Riding, M.J. & Doick, K.J., (2013). Chemical measures of bioavailability/bioaccessibility of PAHs in soil: Fundamentals to application. Journal of Hazardous Materials, 261, 687–700.
  • 13. van Ham, P., van der Meer, S., & Ellahi, M., (2017). Chemical Weapons Challenges Ahead: The Past and Future of the OPCW With a Case Study on Syria. The Hague: Clingendael Report.
  • 14. Mlsna, T.E., & Cemalovic, S., (2006). Chemicapacitive microsensors for chemical warfare agent and toxic industrial chemical detection. Sensors and Actuators B: Chemical, 116(1–2), 192–201.
  • 15. Richardt, A. & Blum, M.M., (2008). Decontamination of Warfare Agents: Enzymatic Methods for the Removal of B/C Weapons. Weinheim: Wiley-VCH Verlag GmbH & Co. KGa.
  • 16. Davidson, C.E., Dixon, M.M., Williams, B.R., & Gary, K., (2020). Detection of Chemical Warfare Agents by Colorimetric Sensor Arrays. ACS Sens., 5(4), 1102–1109.
  • 17. Smith, W.J., (2007). Advances in military textiles and personal equipment. Sawston-Cambridge: Woodhead Publishing.
  • 18. Wood, J.P. & Adrion, A.C., (2019). Review of Decontamination Techniques for the Inactivation of Bacillus anthracis and Other Spore-Forming Bacteria Associated with Building or Outdoor Materials. Environ Sci Technol., 6;53(8), 4045–4062. DOI: 10.1021/acs.est.8b05274.
  • 19. Kassa, J., (2002). Review of Oximes in the Antidotal Treatment of Poisoning by Organophosphorus Nerve Agents. Journal of Toxicology: Clinical Toxicology, 40(6), 803–16.
  • 20. Barras, V. & Greub, G., (2014). History of biological warfare and bioterrorism. Clinical Microbiology and Infection, 20(6), 497–502.
  • 21. Giannoukos, S., Brkić, B., Taylor, S., Marshall, A., & Verbeck, G.F., (2016). Chemical Sniffing Instrumentation for Security Applications. Chemical Reviews, 116(14), 8146–8172.
  • 22. Radonovich, L.J., Cheng, J., Shenal, B.V., Hodgson, M., & Bender, B.S., (2009). Respirator tolerance in health care workers. JAMA, 301(1), 36–38.
  • 23. Sparks, E., (2012). Advances in Military Textiles and Personal Equipment. Sawston-Cambridge: Woodhead Publishing.
  • 24. Oudejans, L. & O’Kelly, J., (2016). Decontamination of personal protective equipment and related materials contaminated with toxic industrial chemicals and chemical warfare agent surrogates. Journal of Environmental Chemical Engineering, 4(3), 2745–2753.
  • 25. Ganesan, K., Raza, S.K., & Vijayaraghavan, R., (2010). Chemical warfare agents. J Pharm Bioallied Sci., 2(3), 166–178.
  • 26. Haywood, P.T. & Karalliedde, L., (2016). Management of poisoning due to organophosphorus compounds. Current Anaesthesia & Critical Care, 11(6), 331–337.
  • 27. Yu, X. & Wu, P., (2013). A survey on wireless sensor network infrastructure for agriculture. Computer Standards & Interfaces, 35(1), 59-64.
  • 28. Webber, M.E., Pushkarsky, M., & Patel, C.K.N., (2005). Optical detection of chemical warfare agents and toxic industrial chemicals: Simulation. Journal of Applied Physics, 97.
  • 29. Tatham, P. & Kovács, G., (2010). The application of “swift trust” to humanitarian logistics. International Journal of Production Economics, 126(1), 35–45.
  • 30. Peek, L. & Stough, L.M., (2010). Children with disabilities in the context of disaster: A social vulnerability perspective. Child Development, 81(4), 1260–1270.
  • 31. Radonovich, L.J., Cheng, J., Shenal, B.V., Hodgson, M., & Bender, B.S., (2009). Respirator tolerance in health care workers. JAMA, 301(1), 36–38.
  • 32. NATO Advanced Research Workshop on Defence Against Weapons of Mass Destruction Terrorism. (2009). Defence Against Weapons of Mass Destruction Terrorism. Amsterdam: IOS Press.
  • 33. Vale, J.A., (2014). The role of antidotes in the management of poisoning by organophosphorus compounds. Toxicological Reviews, 23(2), 81–89.
  • 34. Brent, J., Burkhart, K., Dargan, P., Hatten, B., & Mégarbane, B., (2017). Critical Care Toxicology: Diagnosis and Management of the Critically Poisoned Patient. New York: Springer International Publishing.
  • 35. Goldmann, E. & Galea, S., (2014). Mental health consequences of disasters. Annual Review of Public Health, 35, 169-183.
  • 36. Zhang, P., ed. (2020). A controlled cross-over study to evaluate the efficacy of improvised dry and wet emergency decontamination protocols for chemical incidents. San Francisco: PLOS ONE. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641342/.
  • 37. Almer, C. et al., (2017). Water scarcity and rioting: Disaggregated evidence from Sub-Saharan Africa. Journal of Environmental Economics and Management, 86, 193–209.
  • 38. Keoleian, G.A., (1998). Comparative assessment of wet and dry garment cleaning. Journal of Cleaner Production, 6(1), 23–36.
  • 39. Luning, P.A., (2008). Comprehensive analysis and differentiated assessment of food safety control systems: a diagnostic instrument. Trends in Food Science & Technology, 19(10), 522–534.
  • 40. Brennan, R.J. & Waeckerle, J.F., (1999). Chemical Warfare Agents: Emergency Medical and Emergency Public Health Issues. Annals of Emergency Medicine, 34(2), 191–204.
  • 41. Toader, G., Rotariu, T., & Pulpea, D., (2021). Polymeric blends designed for Surface decontamination. U.P.B. Sci. Bull., Series B, 83(3).
  • 42. Cox, R.D., (1994). Decontamination and Management of Hazardous Materials Exposure Victims in the Emergency Department. Annals of Emergency Medicine, 23(4), 761–770.
  • 43. Calder, A. & Bland, S., (2018). CBRN considerations in a major incident. Surgery (Oxford), 36(8), 417–423.
  • 44. Chilcott, R.P., (2014). Managing mass casualties and decontamination. Environment International, 72, 37–45.
  • 45. Chan, T.C., Killeen, J., Griswold, W., & Lenert, L., (2004). Information technology and emergency medical care during disasters. Academic Emergency Medicine, 11(11), 1109–1251.
  • 46. National Research Council, Division on Engineering and Physical Sciences. (2001). Analysis of Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. Clarivate: National Academies Press.
  • 47. Chilcott, R.P., Larner, J., & Matar, H., (2019). UK’s initial operational response and specialist operational response to CBRN and HazMat incidents: a primer on decontamination protocols for healthcare professionals. Emerg Med J, 36, 117–123.
  • 48. Baeynes, J. & Brems, A., (2009). Recovery and recycling of post-consumer waste materials. Part 2. Target wastes (glass beverage bottles, plastics, scrap metal and steel cans, end-of-life tyres, batteries and household hazardous waste). International Journal of Sustainable Engineering, 3(4), 232–245.
  • 49. Lee, E.C., (2003). Clinical Manifestations of Sarin Nerve Gas Exposure. JAMA, 290(5), 659–662. doi:10.1001/jama.290.5.659.
  • 50. Balali-Mood, M., (2005). The clinical toxicology of sulfur mustard. Arch Iranian Med, 8(3), 162–179.
  • 51. Lukey, B.J. & Romano, J.A., (2007). Chemical Warfare Agents: Chemistry, Pharmacology, Toxicology, and Therapeutics (2nd ed.). Boca Raton, Florida: CRC Press.
  • 52. Das, S. & Thomas, S., (2022). Sensing of Deadly Toxic Chemical Warfare Agents, Nerve Agent Simulants, and their Toxicological Aspects. Elsevier.
  • 53. Herrmann, A., (2011). The Chemistry and Biology of Volatiles. Hoboken, New Jersey: John Wiley & Sons.
  • 54. Shih, T.M., Rowland, T.C. & McDonough, J.H., (2007). Anticonvulsants for Nerve Agent-Induced Seizures: The Influence of the Therapeutic Dose of Atropine. Army Medical Research Institute of Chemical Defense.
  • 55. Monteiro-Riviere, N.A., (2010). Toxicology of the Skin. Boca Raton, Florida: CRC Press.
  • 56. Balali-Mood, M. & Abdollahi, M., (2015). Basic and Clinical Toxicology of Mustard Compounds. New York: Springer International Publishing.
  • 57. Prentiss, A.M., (1937). Chemicals in war: a treatise on chemical warfare. New York: McGraw-Hill.
  • 58. Worek, F., (2005). Diagnostic aspects of organophosphate poisoning. Toxicology, 214(3), 182–188.
  • 59. Bajgar, J., (2004). Advances in Clinical Chemistry. Elsevier.
  • 60. Marrs, T.T. & Maynard, R.L., (2007). Chemical Warfare Agents: Toxicology and Treatment Hoboken, New Jersey: John Wiley & Sons.
  • 61. Westing, A.H., (1984). Herbicides in War: The Long-term Ecological and Human Consequences. Abingdon: Taylor & Francis.
  • 62. Cohn, S.K., (2010). Black Death and Plague: the Disease and Medical Thought. Oxford: Bibliographies Online Research Guide. Oxford University Press, USA.
  • 63. National Research Council, Committee to Review the Department of Homeland Security’s Approach to Risk Analysis. (2010). Review of the Department of Homeland Security’s Approach to Risk Analysis. Washington: National Academies Press.
  • 64. Chakalian, P.M., (2019). Mechanisms of Social Vulnerability to Environmental Hazards. Arizona: Arizona State University.
  • 65. Tuorinsky, S.D., (2008). Medical Aspects of Chemical Warfare. Washington: Government Printing Office.
  • 66. Dunn, M.A. & Sidell, F.R., (1989). Progress in medical defense against nerve agents. Maryland: U.S Army Research Institute of Chemical Defense.
  • 67. Jerard, J.A.R. & Salim. (2015). Resilience And Resolve: Communities Against Terrorism. World Scientific, 79–90.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99d26a06-4650-4177-abc1-028770b35bfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.