PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cross-sections and gamma-yields in (p, x) reactions on 14N and 16O for 14,15O production

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dose delivery in proton beam therapy requires significant effort for in vivo verification. PET is considered as one of the most precise methods for such verification using short- -lived radionuclides. One of the newer approaches in proton therapy is based on FLASH therapy, when a 40-60 Gy absorbed dose could be delivered in millisecond time intervals. For this very promising type of therapy a very important task is to reliably identify the beam stopping position within the corresponding organ with a tumor in the patient’s body. This could be done if the beam proton energy in the body is still above the threshold of the corresponding nuclear reaction, in the outgoing channel of which will be produced positron-emitting nuclei. In this work we consider the production of oxygen radionuclides emitting positrons 14O (the half-life 70.6 s) and 15O (the half-life 122.2 s). Using the TALYS code, we calculated cross sections of proton-induced nuclear reactions on 14N and 16O, leading to the formation of 14,15O with the application of a well- -working optical model. In addition, we calculated total gamma-production and average gamma-emission energy for incident proton energy 150 MeV.
Rocznik
Strony
139--143
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
  • International Nuclear Safety Center of Ukraine of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • Department of Nuclear and High-Energy Physics, Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • International Nuclear Safety Center of Ukraine of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
  • Department of Nuclear and High-Energy Physics, Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
autor
  • Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
  • Center for Theranostics, Jagiellonian University, Krakow, Poland
Bibliografia
  • 1. Parodi K, Yamaya T, Moskal P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z Med Phys. 2023;33:22-34. doi: 10.1016/j.zemedi.2022.11.001.
  • 2. Graeff C, Volz L, Durante M. Emerging technologies for cancer therapy using accelerated particles. Prog Part Nucl Phys. 2023;131:104046. doi: 10.1016/j.ppnp.2023.104046.
  • 3. Durante M, Orecchia R, Loeffler JS. Charged-particle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol. 2017;14(8):483-95. doi: 10.1038/nrclinonc.2017.30.
  • 4. Lang K. Towards high sensitivity and high resolution PET scanners: imaging-guided proton therapy and total body imaging. Bio-Algorithms and Med-Systems. 2022;18:96-106. doi: 10.2478/bioal-2022-0079.
  • 5. Abouzahr F, Cesar JP, Crespo P, Gajda M, Hu Z, Kaye W, et al. The first PET glimpse of a proton FLASH beam. Phys Med Biol. 2023;68:125001. doi:10.1088/1361-6560/acd29e.
  • 6. Abouzahr F, Cesar JP, Crespo P, Gajda M, Hu Z, Klein K, et al. The first probe of a FLASH proton beam by PET. Phys Med Biol. 2023;68:235004. doi:10.1088/1361-6560/ad0901.
  • 7. Jäkel O. Physical advantages of particles: protons and light ions. Br J Radiol. 2020;93:20190428. doi:10.1259/bjr.20190428.
  • 8. Brzeziński K, Baran J, Borys D, Gajewski J, Chug N, Coussat A, et al. Detection of range shifts in proton beam therapy using the J-PET scanner: a patient simulation study. Phys Med Biol. 2023;68:145016. doi:10.1088/1361-6560/acdd4c.
  • 9. Purushothaman S, Kostyleva D, Dendooven P, Haettner E, Geissel H, Schuy C, et al. Quasi-real-time range monitoring by in-beam PET: a case for 15O. Sci Rep. 2023; 13(1):18788. doi: 10.1038/s41598-023-45122-2.
  • 10. Koning AJ, Rochman D, Sublet JC, Dzysiuk N, Fleming M, van der Marck S. TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology. Nucl Data Sheets. 2019;155:1-55. https://doi.org/10.1016/j.nds.2019.01.002.
  • 11. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci Adv. 2021;7:eabh4394. doi: 10.1126/sciadv.abh4394.
  • 12. Bass SD, Mariazzi S, Moskal P, Stępień E. Colloquium: Positronium physics and biomedical applications. Rev Mod Phys. 2023;95:021002. doi: 10.1103/RevModPhys.95.021002.
  • 13. Moskal P, Stępień EŁ. Positronium as a biomarker of hypoxia. Bio-Algorithms and Med-Systems. 2021;17(4):311-9. doi: 10.1515/bams2021-0189.
  • 14. Shibuya K, Saito H, Nishikido F, Takahashi M, Yamaya T. Oxygen sensing ability of positronium atom for tumor hypoxia imaging. Commun Phys. 2020;3:173. doi: 10.1038/s42005-020-00440-z.
  • 15. National Nuclear Data Center [Internet]. Q-Value Calculator (QCalc) [cited 2023 Dec 12]. Available from: https://www.nndc.bnl.gov/qcalc.
  • 16. Experimental Nuclear Reaction Data (EXFOR) [cited 2023 Dec 27]. Available from: https://www-nds.iaea.org/exfor.
  • 17. JAEA Nuclear Data Center [Internet]. JENDL-5 [cited 2023 Dec 27]. Available from: https://wwwndc.jaea.go.jp/jendl/j5/j5.html.
  • 18. National Nuclear Data Center [Internet]. ENDF/B-VIII.0 Evaluated Nuclear Data Library [cited 2023 Dec 27]. Available from: https://www. nndc.bnl.gov/endf-b8.0.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99cd14fb-1116-4687-b960-abe4ec2bc432
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.