PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Study of applying chalcedonite for silicone pressure-sensitive adhesives

Identyfikatory
Warianty tytułu
PL
Badania zastosowania chalcedonitu w silikonowych klejach samoprzylepnych
Języki publikacji
EN
Abstrakty
EN
Silicones adhesives (including pressure-sensitive adhesives) are commonly used when high-performance materials are required due to harsh environmental conditions such as high temperatures, humidity, etc. To ensure high resistance to environmental conditions, including high temperatures, modifications to silicone adhesives are made using fillers. This work focuses on the properties of a silicone-based pressure-sensitive adhesive with filler modification. New self-adhesive tapes based on chalcedonite-modified silicone resins have been obtained. The new self-adhesive materials showed increased thermal resistance while maintaining excellent self-adhesive properties. In order to obtain a greater research spectrum and better compatibility with silicone resin, chalcedonite was modified using thiamine (vitamin B1, VitB1), and its effect on self-adhesive compositions was checked.
PL
Kleje silikonowe (w tym samoprzylepne) są powszechnie stosowane wszędzie tam, gdzie wymagane są materiały o wysokich parametrach użytkowych ze względu na trudne warunki eksploatacji (m.in. wysoka temperatura, wilgotność). Aby uzyskać wysoką odporność na warunki środowiskowe, w tym na wysoką temperaturę, dokonuje się modyfikacji klejów silikonowych za pomocą napełniaczy. W pracy zbadano właściwości silikonowych klejów samoprzylepnych modyfikowanych napełniaczem. Wytworzono nowe taśmy samoprzylepne na bazie żywic silikonowych modyfikowanych dodatkiem chalcedonitu. Wykazały one zwiększoną odporność termiczną przy zachowaniu dobrych właściwości samoprzylepnych. W celu zwiększenia zakresu badań i kompatybilności napełniacza z żywicą silikonową, chalcedonit modyfikowano tiaminą (witaminą B1) i sprawdzano wpływ jego ilości na właściwości otrzymanych kompozycji samoprzylepnych.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
  • West Pomeranian Univesity of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Material, Szczecin
  • West Pomeranian Univesity of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Material, Szczecin
  • West Pomeranian Univesity of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Material, Szczecin
  • West Pomeranian Univesity of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical Organic Technology and Polymeric Material, Szczecin
Bibliografia
  • [1] Vendamme R., Schüwer N., Eevers W.: Recent synthetic appro aches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhesives derived from rene wable building blocks. J. Appl. Polym. Sci. (2014), https://doi. org/10.1002/app.40669.
  • [2] Creton C.: Pressure-sensitive adhesives. An introductory cour se. MRS Bull (28) (2003) 434–439, https://doi.org/10.1557/ mrs2003.124.
  • [3] Feldstein M.M., Siegel R.A.: Molecular and nanoscale factors governing pressure-sensitive adhesion strength of viscoelastic polymers. J. Polym. Sci. B Polym. Phys. (50) (2012) 739–772, https://doi.org/10.1002/polb.23065.
  • [4] Vineeth S.K., Gadhave R.V.: Sustainable raw materials in hot melt adhesives. A review. Open J. Polym. Chem. (10) (2020) 49–65, doi: 10.4236/ojpchem.2020.103003.
  • [5] Dhawale P.V., Vineeth S.K., Gadhave R.V. et al.: Tannin as a renewa ble raw material for adhesive applications: a review. Mater. Adv. (3) (2020) 3365–3388, https://doi.org/10.1039/D1MA00841B.
  • [6] Chiaula V., Mazurek P., Eiler J. et al.: Glycerol-silicone adhesi ves with excellent fluid handling and mechanical properties for advanced wound care applications. Int. J. Adhes. Adhes. (102) (2020) 102667, https://doi.org/10.1016/j.ijadhadh.2020.102667.
  • [7] Mazurek P., Vudayagiri S., Skov A.L.: How to tailor flexible sili cone elastomers with mechanical integrity: a tutorial review. Chem. Soc. Rev. 48 (2019) 448–1464, https://doi.org/10.1039/ C8CS00963E.
  • [8] Michel M.: A study of application of chalcedonite as a manganese dioxide carrier. Annals of Warsaw University of Life Sciences – SGGW Land Reclamation 44 (1) (2012) 63–73, https://doi. org/10.2478/v10060-011-0063-z.
  • [9] Kosk I.: Kompleksowe zagospodarowanie odpadowych surow ców chalcedonitowych z osadników kopalni Inowlódz w ochronie środowiska oraz w przemyśle materiałów budowlanych. Gosp. Surowcami Min. 1 (26) (2010) 5–22.
  • [10] Gawenda T., Surowiak A., Krawczykowska A. et al.: Analysis of the Aggregate production process with different geometric properties in the light fraction separator. Materials 12 (15) (2022) 4046, https://doi.org/10.3390/ma15124046.
  • [11] Bartucca M.L., Cerri M., Del Buono D., Forni C.: Use of biostimu lants as a new approach for the improvement of phytoremedia tion performance – a review. Plants 11 (2022) 1946, https://doi. org/10.3390/plants11151946.
  • [12] Radziemska M., Bęś A., Gusiatin Z.M. et al.: Successful outco me of phytostabilization in Cr(VI) Contaminated soils amended with alkalizing additives. IJERPH 17 (2020) 6073, https://doi. org/10.3390/ijerph17176073.
  • [13] Radziemska M.: Study of applying naturally occurring mine ral sorbents of Poland (dolomite halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals. CATENA 163 (2018) 123–129, https://doi.org/10.1016/j.cate na.2017.12.015.
  • [14] Naziemiec Z., Pichniarczyk P., Saramak D.: Current issues of processing and industrial utilization of chalcedonite 1 (18) (2017) 89–96.
  • [15] Michel M.: A study of application of chalcedonite as a manga nese dioxide carrier. Annals of Warsaw University of Life Scien ces - SGGW Land Reclamation 44 (2012) 63–73, https://doi. org/10.2478/v10060-011-0063-z.
  • [16] Gawenda T., Krawczykowski D., Krawczykowska A. et al.: Appli cation of dynamic analysis methods into assessment of geome tric properties of chalcedonite aggregates obtained by means of gravitational upgrading operations. Minerals 10 (2020) 180, https://doi.org/10.3390/min10020180.
  • [17] Antosik A.K., Makuch E., Gziut K.: Influence of modified atta pulgite on silicone pressure-sensitive adhesives properties. J. Polym. Res. 29 (2020) 135, https://doi.org/10.1007/s10965-022 02981-z.
  • [18] Jiokeng S.L.Z., Dongmo L.M., Ymélé E. et al.: Sensitive stripping voltammetry detection of Pb(II) at a glassy carbon electrode modified with an amino-functionalized attapulgite. Sens. Actu ators B Chem. 242 (2017) 1027–1034. https://doi.org/10.1016/j. snb.2016.09.150.
  • [19] Maghear A., Etienne M., Tertiş M. et al.: Clay-mesoporous sili ca composite films generated by electro-assisted self-assem bly. Electrochimica Acta 112 (2013) 333–341, https://doi. org/10.1016/j.electacta.2013.08.119.
  • [20] Mahdavi R., Talesh S.S.A.: Effects of amine (APTES) and thiol (MPTMS) silanes-functionalized ZnO NPs on the structural, mor phological and, selective sonophotocatalysis of mixed pollutants. Box-Behnken design (BBD). J. Alloys Compd. 896 (2022) 163121, https://doi.org/10.1016/j.jallcom.2021.163121.
  • [21] Shirshahi V., Soltani M.: Solid silica nanoparticles. Applications in molecular imaging. Solid silica NPs in molecular imaging. Contrast Media Mol. I. 10 (2015) 1–17, https://doi.org/10.1002/ cmmi.1611.
  • [22] Ahangaran F., Navarchian A.H.: Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents. A review. Adv. Colloid Interface Sci. 286 (2020) 102298, https://doi.org/10.1016/j.cis.2020.102298.
  • [23] Lee B., Kim Y., Lee H., Yi J.: Synthesis of functionalized porous silicas via templating method as heavy metal ion adsorbents: the introduction of surface hydrophilicity onto the surface of adsorbents. Micropor. Mesopor. Mater. 50 (2001) 77–90, https:// doi.org/10.1016/S1387-1811(01)00437-1.
  • [24] Máková V., Holubová B., Krabicová I. et al.: Hybrid organosila ne fibrous materials and their contribution to modern science. Polymer 228 (2021) 123862, https://doi.org/10.1016/j.poly mer.2021.123862.
  • [25] Sawicka B., Ziarati P., Behemanesh M., Skiba D., Adom D.: Plants sources of vitamins against SARS-CoV-2. In Drug Discovery Update, vol. 2 (2022) 147–170, https://doi.org/10.1016/B978-0 323-95574-4.00011-1.
  • [26] Hoque M.: A review on different dietary sources of important vita mins and electrolytes. Int. J. Res. Publ. Rev. 4 (2023) 731–736, https://doi.org/10.55248/gengpi.4.823.50408.
  • [27] Ghanshyam V.J., Hasmukh A.P., Bhavesh D.K., Hari C.B.: Montmorillonite intercalated with vitamin B1 as drug carrier. Appl. Clay Sci. 45 (2009) 248–253, https://doi.org/10.1016/j. clay.2009.06.001.
  • [28] Singh R., Ganaie S.A., Singh A.: Vitamin B1: A versatile organo catalyst for organic synthesis 4 (2017) 81–103, https://doi.org/ 10.2174/2213337204666170824163521.
  • [29] Mallakpour S., Khani Z.: Fabrication of Poly(vinyl alcohol) Nano composites Having Different Contents of Modified SiO2 by Vitamin B1 as Biosafe and Novel Coupling Agent to Improve Mechanical and Thermal Properties. Polymer Composites. 39.S3 (2018): E1589-E1597, DOI 10.1002/pc.
  • [30] Wang C., Song S., Yang Z. et al.: Hydrophobic modification of castor oil-based polyurethane coated fertilizer to improve the controlled release of nutrient with polysiloxane and halloysite. Progress in Organic Coatings 165 (2022) 106756, https://doi. org/10.1016/j.porgcoat.2022.106756.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99c7373f-00e6-437a-b0a8-0f9387e9e8ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.