Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The stretching sheets with variable thickness may occur in engineering applications more frequently than a flat sheet. Due to its various applications, in the present analysis we considered a three dimensional unsteady MHD nanofluid flow over a stretching sheet with a variable wall thickness in a porous medium. The effects of radiation, viscous dissipation and slip boundary conditions are considered. Buongiorno’s model is incorporated to study the combined effects of thermophoresis and Brownian motion. The dimensionless governing equations are solved by using MATLAB bvp4c package. The impact of various important flow parameters is presented and analysed through graphs and tables. It is interesting to note that all the three boundary layer thicknesses are diminished by slip parameters. Further, the unsteady parameter decreases the hydromagnetic boundary layer thickness.
Rocznik
Tom
Strony
709--724
Opis fizyczny
Bibliogr. 29 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, S.V. University Tirupati-517502, A.P, INDIA
autor
- Department of Mathematics, S.V. University Tirupati-517502, A.P, INDIA
autor
- Department of Mathematics, S.V. University Tirupati-517502, A.P, INDIA
Bibliografia
- [1] Crane L.J. (1970): Flow past a stretching plate. Z. Angew. Math. Phys, vol.21, pp.645–647.
- [2] Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, vol.53, pp.2477–2483.
- [3] Nadeemand S. and Lee C. (2012): Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Research Letters, vol.94, pp.1-6.
- [4] Mansur S. and Ishak A. (2016): Unsteady boundary layer flow of a nanofluid over a stretching/shrinking sheet with a convective boundary condition. Journal of the Egyptian Mathematical Society, vol.24, pp.650–655.
- [5] Mabood F., Khan W.A. and Ismail A.I.M. (2015): MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. Journal of Magnetism and Magnetic Materials, vol.374, pp.569–576.
- [6] Bhattacharyya K. and Layek G.C. (2014): Magnetohydrodynamic boundary layer flow of nanofluid over an exponentially stretching permeable sheet. Hindawi Publishing Corporation Physics Research International, vol.2014, pp.1-12.
- [7] Daba M. and Devaraj P. (2016): Unsteady boundary layer flow of a nanofluid over a stretching sheet with variable fluid properties in the presence of thermal radiation. Thermophysics and Aeromechanics, vol.23, pp.403-413.
- [8] Sharma R., Ishak A. and Pop I. (2013): Partial slip flow and heat transfer over a stretching sheet in a nanofluid. Hindawi Publishing Corporation, Mathematical Problems in Engineering, vol.2013, pp.1-7.
- [9] Maxwell J.C. (1879): On stresses in rarefied gases arising from inequalities of temperature. Philosophical Transactions: The Royal Society London, vol.170, pp.231-256.
- [10] Hak G.M. (2002): Flow Physics. In: Gad-el-Hak, M (ed.) The MEMS Handbook. CRC Press, Boca Raton.
- [11] Beavers G.S. and Joseph D.D. (1967): Boundary condition at a naturally permeable wall. Journal of Fluid Mechanics, vol.30, pp.197-207.
- [12] Das K. (2015): Nanofluid flow over a non-linear permeable stretching sheet with partial slip. Journal of the Egyptian Mathematical Society, vol.23, pp.451–456.
- [13] Goyal M. and Bhargava R. (2014): Boundary layer flow and heat transfer of viscoelastic nanofluids past a stretching sheet with partial slip conditions. Applied Nanoscience, vol.4, pp.761–767.
- [14] Awais M., Hayat T., Ali A. and Irum S. (2016): Velocity, thermal and concentration slip effects on a magnetohydrodynamic nanofluid flow. Alexandria Engineering Journal, vol.55, pp.2107–2114.
- [15] Raza J., Mohd Rohni A., Omar Z. and Awais M. (2016): Heat and mass transfer analysis of MHD nanofluid flow in a rotating channel with slip effects. Journal of Molecular Liquids, vol.219, pp.703–708.
- [16] Ibrahim W. and Shankar B. (2013): MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary conditions. Computers and Fluids, vol.75, pp.1–10.
- [17] Nagendramma V., Kiran Kumar R.V.M.S.S., Durga Prasad P., Leelaratnam A. and Varma S.V.K. (2016): Multiple slips and radiation effects on Maxwell nanofluid flow over a permeable stretching surface with dissipation. Journal of Nanofluids, vol.5, pp.817-825.
- [18] Kiran Kumar R.V.M.S.S. and Varma S.V.K. (2017): Multiple slips and thermal radiation effects on MHD boundary layer flow of a nanofluid through porous medium over a nonlinear permeable sheet with heat source and chemical reaction. Journal of Nanofluids, vol.6, pp.48-58.
- [19] Shaw S., Kameswaran P.K. and Sibanda P. (2016): Effects of slip on nonlinear convection in nanofluid flow on stretching surfaces. Boundary Value Problems, vol.2, pp.1-11.
- [20] Fang T., Zhang J. and Yongfang Zhong (2012): Boundary layer flow over a stretching sheet with variable thickness. Applied Mathematics and Computation, vol.218, pp.7241–7252.
- [21] Khader M.M. and Ahmed M. Megahed (2013): Numerical solution for boundary layer flow due to a nonlinearly stretching sheet with variable thickness and slip velocity. European Physics Journal Plus, vol.128, 100.
- [22] Anjali Devi S.P. and Prakash M. (2015): Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slendering stretching sheet. Journal of the Nigerian Mathematical Society, vol.34, pp.318–330.
- [23] Anjali Devi S.P. and Prakash M. (2016): Thermal radiation effects on hydromagnetic flow over a slendering stretching sheet. Journal of Brazilian Society Mechanical Science and Engineering, vol.38, pp.423–431.
- [24] Abdel-Wahed M.S., Elbashbeshy E.M.A. and Emam T.G. (2015): Flow and heat transfer over a moving surfach with non-linear velocity and variable thickness in a nanofluids in the presence of Brownian motion. Applied Mathematics and Computation, vol.254, pp.49-62.
- [25] Kiran Kumar R.V.M.S.S. and Varma S.V.K. (2017): Hydromagnetic boundary layer slip flow of nanofluid through porous medium over a slendering stretching sheet. Journal of Nanofluids, vol.6, pp.852-861.
- [26] Kiran Kumar R.V.M.S.S., Vijaya Kumar Varma S., Raju C.S.K., Ibrahim S.M., Lorenzini G. and Lorenzini E. (2017): Magnetohydrodynamic 3D slip flow in a suspension of carbon nanotubes over a slendering sheet with heat source/sink. Continuum Mechanics and Thermodynamics, vol.29, pp.835-851.
- [27] Hayat T., Waqas M., Alsaedi A., Bashir G. and Alzahrani F. (2017): Magnetohydrodynamic (MHD) stretched flow of tangent hyperbolic nanoliquid with variable thickness. Journal of Molecular Liquids, vol.229, pp.178–184.
- [28] Acharya N., Das K. and Kumar Kundu P. (2016): Ramification of variable thickness on MHD TiO2 and Ag nanofluid flow over a slendering stretching sheet using NDM. European Physics Journal Plus, vol.131, No.303, pp.1-16.
- [29] Prasad K.V., Vajravelu K., Vaidya H. and Robert A. Van Gorder (2017): MHD flow and heat transfer in a nanofluid over a slender elastic sheet with variable thickness. Results in Physics, vol.7, pp.1462–1474.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99bfcfff-fec1-4e35-837d-4d859773b6f1