Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents a study of the oscillatory dynamics of a road train when loading a semi-trailer with bulk material (grain), in particular, during reloading from a combine harvester hopper. It is established that the peculiarities of the location of the flow of bulk material significantly affect the vertical oscillations of the suspension elements of the vehicle and trailer, which in turn affects the technical condition of the vehicle and driver comfort. Analytical and numerical modelling of the dynamic behaviour of a road train is carried out, taking into account the design characteristics of the suspension, tyres, damping elements, as well as the conditions of load transfer from the bulk medium. Three main load points were evaluated: over the trailer axle, over the vehicle axle, and between the axles. The smallest fluctuations, with a reduction of up to 45% compared to the other positions, are observed when loading between the bridges. The mathematical model takes into account the complex disturbing effects arising from impulse loading and allows determining the modes of impact: rectangular (up to 60 l/min), cosine (up to 100 l/min) and exponential (over 100 l/min). The results obtained can be used to optimise the design of suspensions, plan routes and develop recommendations for safe loading. The distribution of masses in real operating conditions was also taken into account, which ensures the practical significance of the work for the agro-transport industry.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
158--164
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- Sumy National Agrarian University, Sumy, Ukraine
autor
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
autor
- Sumy National Agrarian University, Sumy, Ukraine
autor
- Sumy National Agrarian University, Sumy, Ukraine
Bibliografia
- 1. Abdelkareem, M. A., Xu, L., Ali, M. K. A., El-Daly, A. B., Hassan, M. A., Elagouz, A., & Bo, Y., 2019. Analysis of the prospective vibrational en ergy harvesting of heavy-duty truck suspensions: A simulation ap proach. Energy, 173, 332–351. DOI: 10.1016/j.energy.2019.02.060.
- 2. Wei, C., & Jing, X., 2017. A comprehensive review on vibration energy har vesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74, 1–18. DOI: 10.1016/j.rser.2017.01.073.
- 3. Choi, S., Seong, M., & Kim, K., 2009. Vibration control of an electrorheo logical fluid-based suspension system with an energy regenerative mechanism. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 223(4), 459–469. DOI: 10.1243/09544070jauto968.
- 4. Roundy, S., Wright, P. K., & Rabaey, J., 2003. A study of low level vibra tions as a power source for wireless sensor nodes. Computer Communi cations, 26(11), 1131–1144. DOI: 10.1016/s0140-3664(02)00248-7.
- 5. Solarov, O., Savoiskyi, O., Melnyk, N., 2024. Research on the influence of cargo arrangement in the body on the stability and load on the axles of a cargo vehicle. Visnyk of Kherson National Technical University, 4(91), 140–145. DOI: 10.35546/kntu2078-4481.2024.4.17.
- 6. Gammaitoni, L., Neri, I., & Vocca, H., 2009. Nonlinear oscillators for vibra tion energy harvesting. Applied Physics Letters, 94(16). DOI: 10.1063/1.3120279.
- 7. Anderson, T.L., 2005. Mechanics: fundamentals and applications, Third Ed., CRC Press.
- 8. Özmen, B., & Topaç, M., 2022. Effect of damping rate on fatigue failure tendency of a topology-optimised swing arm for a heavy commercial truck cab suspension. Engineering Failure Analysis, 137, 106276. DOI: 10.1016/j.engfailanal.2022.106276.
- 9. Dai, C., & Liang, J. H., 2011. Experimental research on a certain light truck cab suspension system effect on ride comfort. Applied Mechanics and Materials, 128–129, 1460–1463. tific.net/AMM.128-129.1460.
- 10. Foster, A. W., 1978. A heavy truck cab suspension for improved ride. SAE Technical Papers on CD-ROM/SAE Technical Paper Series. DOI: 10.4271/780408.
- 11. Dengfeng, W., Rongchao, J., Wenchao, L., Hanguang, L., 2016. Optimisa tion of cab suspension parameters of self-dumping trucks using grey re lational analysis. J. Grey Syst, 28, 76-89.
- 12. Wang, K., & Gao, F., 2018. Vibration isolation analysis and optimization of commercial vehicle CAB suspension system. SAE Technical Papers on CD-ROM/SAE Technical Paper Series. DOI: 10.4271/2018-01-1405.
- 13. O¨zmen, B., Çoban, U., Çanakkale, K., Bilal, L., Topaç, M.M., 2021. Struc tural analysis and experimental validation of a torsion bar for a construc tion truck cab suspension system. OTEKON 2020: 10th International Automotive Technologies Congress, Bursa: Uludag˘ University; 05-07 September 2021, 136-143.
- 14. Gözen, E., Çevirgen, M. S., & Özgül, E., 2022. Transmission speed and ratio optimization for heavy-duty electric truck. Heliyon, 8(8), e10028. DOI: 10.1016/j.heliyon.2022.e10028.
- 15. Yao, K., Dong, Q., Chen, X., Yan, S., Shi, B., Xie, S., & Cheng, Z., 2024. Effects of heavy truck braking on inverted asphalt pavement considering vehicle dynamics. Construction and Building Materials, 412, 134871. DOI: 10.1016/j.conbuildmat.2024.134871.
- 16. Weißmann, A., Görges, D., & Lin, X., 2017. Energy-optimal adaptive cruise control combining model predictive control and dynamic programming. Control Engineering Practice, 10.1016/j.conengprac.2017.12.001.
- 17. Elbert, P., Ebbesen, S., & Guzzella, L., 2012. Implementation of Dynamic Programming for $n$-Dimensional Optimal Control Problems With Fi nal State Constraints. IEEE Transactions on Control Systems Technol ogy, 21(3), 924–931. DOI: 10.1109/tcst.2012.2190935.
- 18. Hellström, E., Ivarsson, M., Åslund, J., & Nielsen, L., 2008. Look-ahead control for heavy trucks to minimize trip time and fuel consumption. Control Engineering Practice, 10.1016/j.conengprac.2008.07.005.
- 19. Lefèvre, S., Sun, C., Bajcsy, R., Laugier, C., 2014. Comparison of parametric and non- parametric approaches for vehicle speed prediction. In Pro ceedings of the American Control Conference (ACC), 3494–3499.
- 20. Li, S., Li, K., Rajamani, R., & Wang, J., 2010. Model Predictive Multi-Ob jective Vehicular Adaptive Cruise Control. IEEE Transactions on Con trol Systems Technology, 10.1109/tcst.2010.2049203
- 21. Albeaik, S., Wu, T., Vurimi, G., Chou, F., Lu, X., & Bayen, A. M., 2022. Deep truck cruise control. Control Engineering Practice, 121, 105026. DOI: 10.1016/j.conengprac.2021.105026.
- 22. Kuznietsov, R. M., & Danyliuk, R. L., 2011. On the stability of a tractor trailer road train in braking mode. Naukovi Notatky: Mizhvuzivskyi Zbirnyk, Lutsk National Technical University, (32), 197–199.
- 23. Sakhno, V. P., Onyshchuk, V. P., & Prydiuk, V. M., 2009. On determining the design and layout parameters of a container truck train. Visnyk Natsionalnoho Transportnoho Universytetu, (19), 80–83.
- 24. Polyakov, V. M., Prykhodchenko, D. Yu., & Abramov, D. A., 2007. Deter mination of vertical loads on the wheels of a road train. Avtoshliakhovyk Ukrainy. Okremyi Vypusk. Visnyk TsNTs TAU, 126–130.
- 25. Moisia, D. L., 2016. Improving the maneuverability and stability of a road train with a long-wheelbase semitrailer: Author’s abstract of the disser tation for the degree of Candidate of Technical Sciences, specialty 05.22.02 “Automobiles and Tractors”. Kyiv. 20 p.
- 26. Sakhno, V. P., Polyakov, V. M., Kostenko, A. V., et al. (2015). Operational properties of motor vehicles. In 3 parts. Part 3: Maneuverability. Con trollability. Stability: Textbook. Donetsk: LANDON-XXI. 400 p. ISBN 978-617-7280-17-9.
- 27. Hooker, J. (1988). Optimal driving for single-vehicle fuel economy. Trans portation Research Part a General, 22(3), 183–201. DOI: 10.1016/0191 2607(88)90036-2.
- 28. Huang, W., Bevly, D., Schnick, S., & Li, X. (2008). Using 3D road geometry to optimize heavy truck fuel efficiency. In Proceedings of the 11th Inter national IEEE Conference on Intelligent Transportation Systems (ITSC), 334–339.
- 29. Kamal, M. a. S., Imura, J., Hayakawa, T., Ohata, A., & Aihara, K. (2014). Smart driving of a vehicle using model predictive control for improving traffic flow. IEEE Transactions on Intelligent Transportation Systems, 15(2), 878–888. DOI: 10.1109/tits.2013.2292500.
- 30. Kolodnenko, V., & Solarov, O. (2022). Research of free oscillations of the body of the vehicle while driving. Bulletin of Sumy National Agrarian University. The Series: Mechanization and Automation of Production Processes, (1(47), 55-58. DOI: 10.32782/msnau.2022.1.9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99bde1e6-2a97-4a6c-a8b3-5fe4e9c06608
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.