PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Responses of aquatic macrophyte Egeria densa to saline waters and biochar amended substrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In freshwater environments, salinity is a significant environmental stressor that has an impact on aquatic plant development and survival. Elevated salinity levels, frequently originating from natural processes or human actions, can lead to diminished plant growth, poor photosynthesis, and even plant mortality. Hence, the present study aimed to analyze the salinity tolerance level of the macrophyte Egeria densa, assess the biochar induced growth of E.densa in different saline condition (5 and 10 ppt) in addition of biochar (15 and 30 gm). The increased interestin biochar as an environmentally friendly and sustainable amendment to improve plant resilience in harsh environmental circumstances is the driving force for this work. The study analyzed different water quality parameters,shoot weight gain rate (SWR), shoot growth rate (SGR), root growth rate (RGR), total chlorophyll, carotenoids,and availability of florescence dissolved organic matter (fDOM). Experimental analysis was conducted in a setupat a laboratory scale for 10 days. Slight difference was observed in water quality parameters (pH, electrical conductivity, total dissolved solids and dissolved oxygen) and the identified salinity threshold level of E. densa were5 ppt. SWR (0.014 gm/day), SGR (0.14 cm/day), RGR (0.015 cm/day), total chlorophyll (0.34 mg/g fresh weight)and carotenoids (0.16 mg/g fresh weight) concentration substantially increased with the application of 5% biocharin the 5 ppt saline water. Fulvic acid, p-Cresol like substance, and Protein-like extracellular polymeric substance(EPS), and anthracene-like peaks were found in the fDOM. According to the study, biochar increased plant growthat 5 ppt salinity, however neither Egeria densa nor biochar reduced the salinity of the water. Biochar aided E.densa in adapting to salt stress by increasing shoot length, root development, and chlorophyll levels.
Słowa kluczowe
Rocznik
Strony
234--247
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Department of Environmental Science and Disaster Management, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka – 1216, Bangladesh
  • Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka – 1342, Bangladesh
  • Department of Environmental Science and Disaster Management, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka – 1216, Bangladesh
  • Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka – 1342, Bangladesh
Bibliografia
  • 1. Agbna, G., Ali, A., Bashir, A., Eltoum, F., Hassan, M., Agbna, G.H., Ali, A.B., Bashir, A.K., Hassan, M.M., (2017). Influence of biochar amendment on soil water characteristics and crop growth enhancement under salinity stress, International Journal of Engineering Works Kambohwell Publishers Enterprise.
  • 2. Alam, A.K.M.R., Hoque, S., (2017). Phytoremediation of industrial wastewater by culturing aquatic macrophytes, Trapa natans L. and Salvinia cucullata Roxb. Jahangirnagar University J. Biol. Sci 6, 19–27.
  • 3. Ali, S., Riwan, M., Qayyum, M., Ok, Y.S., Ibrahim, M., Riaz, M., Arif, M., Hafeez, F., Al-Wabel, M., Shahzad, A., (2017a). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environmental Science and Pollution Research 24. https://doi.org/10.1007s11356-017-8904-x
  • 4. Ali, S., Rizwan, M., Qayyum, M.F., Ok, Y.S., Ibrahim, M., Riaz, M., Arif, M.S., Hafeez, F., Al-Wabel, M.I., Shahzad, A.N., (2017b). Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res Int 24, 12700–12712. https://doi.org/10.1007/ S11356-017-8904-X
  • 5. Anwari, G., Mandozai, A., Feng, J., (2019). Effects of biochar amendment on soil problems and improving rice production under salinity conditions. Advanced Journal of Graduate Research 7, 45–63. https://doi.org/10.21467/ajgr.7.1.45-63
  • 6. Atapaththu, K.S.S., Parveen, M., Asaeda, T., Rashid, M.H., (2018). Growth and oxidative stress response of aquatic macrophyte myriophyllum spicatum to sediment anoxia. Fundamental and Applied Limnology 191, 289–298. https://doi.org/10.1127/FAL/2018/1070
  • 7. BBI, (2022). Bangladesh Biochar Initiative [WWW Document]. URL https://www.biochar-bangladesh. org/ (accessed 1.27.22).
  • 8. da Silva, E.C., Nogueira, R.J.M.C., de Araújo, F.P., de Melo, N.F., de Azevedo Neto, A.D., (2008). Physiological responses to salt stress in young umbu plants. Environ Exp Bot 63, 147–157. https://doi.org/10.1016/J.ENVEXPBOT.2007.11.010
  • 9. Determann, S., Lobbes, J. örg M., Reuter, R., Rullkötter, J. ürgen, (1998). Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Mar Chem 62, 137–156. https://doi.org/10.1016/S0304-4203(98)00026-7
  • 10. Erin, L., (2013). Preparing Saline Solution. University of Michigan Health System.
  • 11. Guo, X., Wang, X., Liu, J., (2016). Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation. Sci Rep 6. https://doi.org/10.1038/srep28391
  • 12. Hasanuzzaman, M., Nahar, K., Alam, M.M., Bhowmik, P.C., Hossain, M.A., Rahman, M.M., Prasad, M.N.V., Ozturk, M., Fujita, M., (2014). Potential use of halophytes to remediate saline soils. Biomed Res Int. https://doi.org/10.1155/2014/589341
  • 13. Heidari, M., (2012). Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. Afr J Biotechnol 11, 379–384. https://doi.org/10.5897/AJB11.2572
  • 14. Hongqiao, L., Suyama, A., Mitani-Ueno, N., Hell, R., Maruyama-Nakashita, A., (2021). A low level of NaCl stimulates plant growth by improving carbon and sulfur assimilation in arabidopsis thaliana. Plants 10. https://doi.org/10.3390/PLANTS10102138/S1
  • 15. Hu, X., Tanaka, A., Tanaka, R., (2013). Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples. Plant Methods 9, 1–13. https://doi.org/10.1186/1746-4811-9-19/FIGURES/8
  • 16. Hunt, J., Duponte, M., Sato, D., Kawabata, A., 2010. Soil and Crop Management SCM-30 The Basics of Biochar : A Natural Soil Amendment.
  • 17. Imakumbili, M.L.E., Semu, E., Semoka, J.M.R., Abass, A., Mkamilo, G., (2020). Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use. PLoS One 15, e0228641. https://doi.org/10.1371/JOURNAL.PONE.0228641
  • 18. Kefu, Z., Hai, F., Ungar, I.A., 2002. Survey of halophyte species in China. Plant Science 163, 491–498. https://doi.org/10.1016/S0168-9452(02)00160-7
  • 19. Koca, H., Bor, M., Özdemir, F., Türkan, I., (2007). The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60, 344–351. https://doi.org/10.1016/J.ENVEXPBOT.2006.12.005
  • 20. Lee, M.K., Van Iersel, M.W., (2008). Sodium chloride effects on growth, morphology, and physiology of chrysanthemum (Chrysanthemum ×morifolium). HortScience 43, 1888–1891. https://doi.org/10.21273/HORTSCI.43.6.1888
  • 21. Liu, H., Fang, H.H.P., 2002. Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnol Bioeng 80, 806–811. https://doi.org/10.1002/BIT.10432
  • 22. Mayer, L.M., (1999). Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochim Cosmochim Acta 63, 207–215. https://doi.org/10.1016/S0016-7037(99)00028-9
  • 23. Mili, S.A., Rahman, S.M.M., Pasha, A.B.M.K., Chowdhury, M.A.H., (2024). Assessment on the effect of rapid urbanization on groundwater quality of mirpur area, Dhaka City, Bangladesh. INTI JOURNAL, 1–9. https://doi.org/https://doi.org/10.61453/ INTIj.202433
  • 24. Mostofa, K.M.G., Liu, C. Qiang, Mottaleb, M.A., Wan, G., Ogawa, H., Vione, D., Yoshioka, T., Wu, F., (2013). Dissolved organic matter in natural waters. Environmental Science and Engineering 1–137. https://doi.org/10.1007/978-3-642-322235_1/COVER
  • 25. Mur, L.A.J., Aubry, S., Mondhe, M., Kingston- Smith, A., Gallagher, J., Timms-Taravella, E., James, C., Papp, I., Hörtensteiner, S., Thomas, H., Ougham, H., (2010). Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis. New Phytologist 188, 161–174. https://doi.org/10.1111/j.1469-8137.2010.03377.x
  • 26. Nehela, Y., Mazrou, Y.S.A., Alshaal, T., Rady, A.M.S., El-Sherif, A.M.A., Omara, A.E.D., El-Monem, A.M.A., Hafez, E.M., (2021). The integrated amendment of sodic-saline soils using biochar and plant growth-promoting rhizobacteria enhances maize (Zea mays L.) resilience to water salinity. Plants 10. https://doi.org/10.3390/plants10091960
  • 27. Niloy, N.M., Haque, M.M., Tareq, S.M., (2021). Characterization of dissolved organic matter at urban and industrial rainwater of Bangladesh by fluorescence spectroscopy and EEM-PARAFAC modeling. Environmental Challenges 5, 100250. https://doi.org/10.1016/J.ENVC.2021.100250
  • 28. Niloy, N.M., Shammi, M., Haque, M.M., Tareq, S.M., 2022. Biogeochemistry of the dissolved organic matter (DOM) in the estuarine rivers of Bangladesh–Sundarbans under different anthropogenic influences. Heliyon 8, e10228. https://doi.org/10.1016/J.HELIYON.2022.E10228
  • 29. Oo, Y.Y.N., Su, M.C., Kyaw, K.T., (2017). Extraction and determination of chlorophyll content from microalgae. International Journal of Advanced Research and Publications 1.
  • 30. Parihar, P., Singh, S., Singh, R., Singh, V.P., Prasad, S.M., (2014). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research 22(6), 4056–4075. https://doi.org/10.1007/S11356-014-3739-1
  • 31. Parkash, V., Singh, S., (2020). Potential of biochar application to mitigate salinity stress in eggplant. HortScience 55, 1946–1955. https://doi.org/10.21273/HORTSCI15398-20
  • 32. Parry, C., Blonquist, J.M., Bugbee, B., (2014). In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant Cell Environ 37, 2508–2520. https://doi.org/10.1111/PCE.12324
  • 33. Parveen, M., Abdullah, M., Rahman, S.M.M., Chowdhury, M.A.H., Khan, M.S.I., Pasha, A.K., (2022a). Improvement of wastewater quality of Dhaleswari river, Bangladesh using submerged macrophyte Egeria densa. Journal of Sustainability Perspectives 2, 449–458. https://doi.org/10.14710/ jsp.2022.15547
  • 34. Parveen, M., Abdullah, M., Rahman, S.M.M., Haque, A., Khan, S.I., Kamal, P.A.B.M., (2022b). Improvement of wastewater quality of Dhaleswari river, Bangladesh using submerged macrophyte Egeria densa. Journal of Sustainability Perspectives 2, 449–458. https://doi.org/10.14710/jsp.2022.15547
  • 35. Parveen, M., Asaeda, T., Rashid, M.H., (2017a). Effect of hydrogen sulfide exposure on the growth, oxidative stress and carbohydrate metabolism of Elodea nuttallii and Egeria densa. Fundamental and Applied Limnology 191, 53–62. https://doi.org/10.1127/FAL/2017/1046
  • 36. Parveen, M., Asaeda, T., Rashid, M.H., 2017b. Hydrogen sulfide induced growth, photosynthesis and biochemical responses in three submerged macrophytes. Flora 230, 1–11. https://doi.org/10.1016/J. FLORA.2017.03.005
  • 37. Parveen, M., Miyagi, A., Kawai-Yamada, M., Rashid, M.H., Asaeda, T., (2019). Metabolic and biochemical responses of Potamogeton anguillanus Koidz. (Potamogetonaceae) to low oxygen conditions. J Plant Physiol 232, 171–179. https://doi.org/10.1016/j.jplph.2018.11.023
  • 38. Pasha, A.B.M.K., Abdillahi, M.M., Rahman, S.M.M., Mozumder, S., Chowdhury, A.H., Fuente, J.A. Dela, Parveen, M., 2022. Studies on physicochemical properties of Buriganga river water and the vegetation coverage of surrounding Area, Dhaka, Bangladesh. Sci. Int.(Lahore) 34, 73–78.
  • 39. Pasha, A.B.M.K., Mustafa, S.O., Rahman, S.M.M., Abdullah, M., Chowdhury, Md.A.H., Parveen, M., 2023. Analysis of water quality of Hatirjheel Lake, Dhaka, Bangladesh. Nature Environment and Pollution Technology 22, 245–252. https://doi.org/10.46488/NEPT.2023.v22i01.000
  • 40. Pechar, L., (1987). Use of an acetone: methanol mixture for the extraction and spectrophotometric determination of chlorophyll- a in phytoplankton. Algological Studies 46/Archiv für Hydrobiologiie Supplement 78, 99–117.
  • 41. Peng, N., Wang, K., Tu, N., Liu, Y., Li, Z., (2020). Fluorescence regional integration combined with parallel factor analysis to quantify fluorescencent spectra for dissolved organic matter released from manure biochars. RSC Adv 10, 31502–31510. https://doi.org/10.1039/D0RA02706E
  • 42. Porra, R.J., Thompson, W.A., Kriedemann, P.E., (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 975, 384–394. https://doi.org/10.1016/ S0005-2728(89)80347-0
  • 43. Rajapaksha, A.U., Sik Ok, Y., El-Naggar, A., Kim, H., Song, F., Kang, S., Tsang, Y.F., (2019). Dissolved organic matter characterization of biochars produced from different feedstock materials. J Environ Manage 233, 393–399. https://doi.org/10.1016/j.jenvman.2018.12.069
  • 44. Rashid, M.H., Asaeda, T., Uddin, M.N., (2010). Litter-mediated allelopathic effects of kudzu (Pueraria montana) on Bidens pilosa and Lolium perenne and its persistence in soil. Weed Biol Manag 10, 48–56. https://doi.org/10.1111/J.1445-6664.2010.00366.X
  • 45. Rezwan, S.M., Chowdhury, M.A.H., Rahman, S.M.M., (2022). Assessment of ecosystem services, plant diversity pattern, and water quality of an urban water Body in Dhaka, Bangladesh. Advances in Science, Technology and Innovation 151–163. https://doi.org/10.1007/978-3-030-86499-6_14/COVER
  • 46. Rizwan, M., Ali, S., Qayyum, M.F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., Ok, Y.S., (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res Int 23, 2230–2248. https://doi.org/10.1007/S11356-015-5697-7
  • 47. Saifullah, Dahlawi, S., Naeem, A., Rengel, Z., Naidu, R., (2018). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Science of The Total Environment 625, 320–335. https://doi.org/10.1016/J. SCITOTENV.2017.12.257
  • 48. Schwede-Thomas, S.B., Chin, Y.-P., Dria, K.J., Hatcher, P., Kaiser, E., Sulzberger, B., (2005). Characterizing the properties of dissolved organic matter isolated by XAD and C-18 solid phase extraction and ultrafiltration. Aquat Sci 67, 61–71. https://doi.org/10.1007/s00027-004-0735-4
  • 49. Shammi, M., Pan, X., Mostofa, K.M.G., Zhang, D., Liu, C.Q., (2017a). Seasonal variations and characteristics differences in the fluorescent components of extracellular polymeric substances from mixed biofilms in saline lake. Sci Bull (Beijing) 62, 764–766. https://doi.org/10.1016/J.SCIB.2017.04.016
  • 50. Shammi, M., Pan, X., Mostofa, K.M.G., Zhang, D., Liu, C.Q., (2017b). Photo-flocculation of microbial mat extracellular polymeric substances and their transformation into transparent exopolymer particles: Chemical and spectroscopic evidences. Sci Rep 7. https://doi.org/10.1038/S41598-017-09066-8
  • 51. Sugiyama, Y., Anegawa, A., Inokuchi, H., Kumagai, T., (2005). Distribution of dissolved organic carbon and dissolved fulvic acid in mesotrophic Lake Biwa, Japan. Limnology 6, 3(6), 161–168. https://doi.org/10.1007/S10201-005-0155-8
  • 52. Sun, Y. peng, Yang, J. song, Yao, R. jiang, Chen, X. bing, Wang, X. Ping, (2020). Biochar and fulvic acid amendments mitigate negative effects of coastal saline soil and improve crop yields in a three year field trial. Sci Rep 10. https://doi.org/10.1038/ s41598-020-65730-6
  • 53. Taïbi, K., Taïbi, F., Ait Abderrahim, L., Ennajah, A., Belkhodja, M., Mulet, J.M., (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany 105, 306– 312. https://doi.org/10.1016/J.SAJB.2016.03.011
  • 54. Tasnim, U.F., Shammi, M., Uddin, M.K., Akbor, M.A., (2021). Effect of biochar amended vermicomposting of food and beverage industry sludge along with cow dung and seed germination bioassay. Pollution 7, 355–365. https://doi.org/10.22059/ poll.2021.315530.961
  • 55. Thomas, S.C., Frye, S., Gale, N., Garmon, M., Launchbury, R., Machado, N., Melamed, S., Murray, J., Petroff, A., Winsborough, C., (2013). Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Environ Manage 129, 62–68. https://doi.org/10.1016/J.JENVMAN.2013.05.057
  • 56. V Sundararaju, (2019). Propagate and protect halophytes [WWW Document]. URL https://www. downtoearth.org.in/blog/forests/propagate-and-protect-halophytes-63711 (accessed 1.14.22).
  • 57. Yensen, N.P., (2008). Halophyte uses for the twenty-first century. Ecophysiology of High Salinity Tolerant Plants 367–396. https://doi.org/10.1007/1-4020-4018-0_23
  • 58. Yu, J., Xiao, K., Xue, W., Shen, Y. xiao, Tan, J., Liang, S., Wang, Y., Huang, X., (2020). Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications. Front Environ Sci Eng 14. https://doi.org/10.1007/ s11783-019-1210-8
  • 59. Zhu, Y.-Y., Liu, Y., Xu, J., Ni, B.-J., (2022). Three-dimensional excitation-emission matrix (EEM) fluorescence approach to probing the binding interactions of polystyrene microplastics to bisphenol A. Journal of Hazardous Materials Advances 5, 100046. https://doi.org/10.1016/J.HAZADV.2022.100046
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99bc616f-7180-4f34-aef3-c0121b9da2c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.