PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Obstacle avoidance method of autonomous vehicle based on fusion improved A*APF algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes an autonomous obstacle avoidance method combining improved A-star (A*) and improved artificial potential field (APF) to solve the planning and tracking problems of autonomous vehicles in a road environment. The A*APF algorithm to perform path planning tasks, and based on the longitudinal braking distance model, a dynamically changing obstacle influence range is designed. When there is no obstacle affecting the controlled vehicle, the improved A* algorithm with angle constraint combined with steering cost can quickly generate the optimal route and reduce turning points. If the controlled vehicle enters the influence domain of obstacle, the improved artificial potential field algorithm will generate lane changing paths and optimize the local optimal locations based on simulated annealing. Pondering the influence of surrounding participants, the four-mode obstacle avoidance process is established, and the corresponding safe distance condition is analyzed. A particular index is introduced to comprehensively evaluate speed, risk warning, and safe distance factors, so the proposed method is designed based on the fuzzy control theory. In the tracking task, a model predictive controller in the light of the kinematics model is devised to make the longitudinal and lateral process of lane changing meet comfort requirements, generating a feasible autonomous lane-change path. Finally, the simulation was performed in the Matlab/Simulink and Carsim combined environment. The proposed fusion path generation algorithm can overcome the shortcomings of the traditional single method and better adapt to the dynamic environment. The feasibility of the obstacle avoidance algorithm is verified in the three-lane simulation scenario to meet safety and comfort requirements.
Rocznik
Strony
art. no. e144624
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
autor
  • School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
autor
  • School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
Bibliografia
  • [1] E. Fraedrich and B. Lenz, “Automated driving: Individual and societal aspects,” Transp. Res. Record, vol. 2416, no. 1, pp. 64–72, 2014, doi: 10.3141/2416-08.
  • [2] J. Zhao, B. Liang, and Q. Chen, “The key technology toward the self-driving car,” Int. J. Intell. Syst., vol. 6, no. 1, pp. 2–20, 2018, doi: 10.1108/IJIUS-08-2017-0008.
  • [3] H. Chae and K. Yi, “Virtual Target-based Overtaking Decision, Motion Planning and Control of Autonomous Vehicles,” IEEE Access, IEEE Access, vol. 8, pp. 51363–51376, 2020, doi: 10.1109/ACCESS.2020.2980391.
  • [4] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A Review of Motion Planning Techniques for Automated Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 4, pp. 1135–1145, 2016, doi: 10.1109/TITS.2015.2498841.
  • [5] C. Rodemerk, S. Habenicht, A. Weitzel, H. Winner, and T. Schmitt, “Development of a general criticality criterion for the risk estimation of driving situations and its application to a maneuver-based lane change assistance system,” in IEEE Intelligent Vehicles Symposium, 2012, pp. 264–269, doi: 10.1109/IVS.2012.6232129.
  • [6] L. Habel and M. Schreckenberg, “Asymmetric lane change rules for a microscopic highway traffic model,” in International Conference on Cellular Automata, 2014, pp. 620–629, doi: 10.1007/978-3-319-11520-7_66.
  • [7] X. Sun et al., “NFTSM control of direct yaw moment for autonomous electric vehicles with consideration of tire nonlinear mechanical properties,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 3, p. e137065, 2021, doi: 10.24425/bpasts.2021.137065.
  • [8] J.E. Naranjo, C. Gonzalez, R. Garcia, and T. de Pedro, “Lanechange fuzzy control in autonomous vehicles for the overtaking maneuver,” IEEE Trans. Intell. Transp. Syst., vol. 9, no. 3, pp. 438–450, 2008, doi: 10.1109/TITS.2008.922880.
  • [9] D.C.K. Ngai and N.H.C. Yung, “A multiple-goal reinforcement learning method for complex vehicle overtaking maneuvers,” IEEE Trans. Intell. Transp. Syst., vol. 12, no. 2, pp. 509–522, 2011, doi: 10.1109/TITS.2011.2106158.
  • [10] S. Ulbrich and M. Maurer, “Probabilistic online POMDP decision making for lane changes in fully automated driving,” in 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 2013, pp. 2063–2067, doi: 10.1109/ITSC.2013.6728533.
  • [11] Z. Shiller, Y.-R. Gwo, “Dynamic motion planning of autonomous vehicles,” IEEE Trans. Robot. Autom., vol. 7, no. 2, pp. 241–249, 1991, doi: 10.1109/70.75906.
  • [12] D. Ferguson and A. Stentz, “Anytime, dynamic planning in high-dimensional search spaces,” in IEEE International Conference on Robotics and Automation, 2007, pp. 1310–1315, doi: 10.1109/ROBOT.2007.363166.
  • [13] Y. Pang, Z. Song, X. Li, and J. Pan, “Truncation error analysis on reconstruction of signal from unsymmetrical local average sampling,” IEEE Trans. Cybern., vol. 45, no. 10, pp. 2100–2104, 2014, doi: 10.1109/TCYB.2014.2365513.
  • [14] H. Liu and Y. Zhang, “ASL-DWA: An Improved A-Star Algorithm for Indoor Cleaning Robots,” IEEE Access, vol. 10, pp. 99498–99515, 2022, doi: 10.1109/ACCESS.2022.3206356.
  • [15] K. Zhang, Y. Yang, M. Fu, and M. Wang, “Two-phase A*: A real-time global motion planning method for non-holonomic unmanned ground vehicles,” Proc. Inst. Mech. Eng. Part D-J. Automob. Eng., vol. 235, no. 4, pp. 1007–1022, 2021, doi: 10.1177/0954407020948397.
  • [16] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” in Autonomous Robot Vehicles, Springer, New York, NY, 1986, pp. 396–404, doi: 10.1007/978-1-4613-8997-2_29.
  • [17] H. Xizhi, J. Zhihui, and X. Congcong, “Vehicle Path Planning Fusion Algorithm Based on Road Network,” in Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2020, vol. 1, pp. 98–102, doi: 10.1109/ ITNEC48623.2020.9084895.
  • [18] U. Orozco-Rosas, K. Picos, and O. Montiel, “Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots,” IEEE Access, vol. 7, pp. 156787–156803, 2019, doi: 10.1109/ACCESS.2019.2949835.
  • [19] T. Shim, G. Adireddy, and H. Yuan, “Autonomous vehicle collision avoidance system using path planning and model-predictive-control-based active front steering and wheel torque control,” Proc. Inst. Mech. Eng. Part D–J. Automob. Eng., vol. 226, no. 6, pp. 767–778, 2012, doi: 10.1177/0954407011430275.
  • [20] N.L. Manuel, N. İnanç, and M. Erten, “Control of mobile robot formations using A-star algorithm and artificial potential fields,” J. Mechatron. Electr. Power Veh. Technol., vol. 12, no. 2, pp. 57–67, 2021, doi: 10.14203/j.mev.2021.v12.57-67.
  • [21] C. Ju, Q. Luo, and X. Yan, “Path planning using artificial potential field method and A-star fusion algorithm,” in 2020 Global Reliability and Prognostics and Health Management (PHM-Shanghai), 2020, pp. 1–7, doi: 10.1109/PHM-Shanghai49105.2020.9280929.
  • [22] V. Mohan, A. Rani, V. Singh, and F. Systems, “Robust adaptive fuzzy controller applied to double inverted pendulum,” J. Intell. Fuzzy Syst., vol. 32, no. 5, pp. 3669–3687, 2017, doi: 10.3233/JIFS-169301.
  • [23] S.H. Tabatabaei Oreh, R. Kazemi, and S. Azadi, “A sliding-mode controller for directional control of articulated heavy vehicles,” Proc. Inst. Mech. Eng. Part D-J. Automob. Eng., vol. 228, no. 3, pp. 245–262, 2014, doi: 10.1177/0954407013503628.
  • [24] W. Zhang, Z. Wang, L. Drugge, and M. Nybacka, “Evaluating model predictive path following and yaw stability controllers for over-actuated autonomous electric vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 12807–12821, 2020, doi: 10.1109/TVT.2020.3030863.
  • [25] G.V. Raffo et al., “A predictive controller for autonomous vehicle path tracking,” IEEE Trans. Intell. Transp., vol. 10, no. 1, pp. 92–102, 2009, doi: 10.1109/TITS.2008.2011697.
  • [26] T. Tuan et al., “Disturbance-Kalman state for linear offset free MPC,” Arch. Control Sci., vol. 32, no. 1, pp. 153–173, 2022, doi: 10.24425/acs.2022.140869.
  • [27] C. Urmson, “Self-driving cars and the urban challenge,” IEEE Intell. Syst., vol. 23, no. 2, pp. 66–68, 2008, doi: 10.1109/MIS.2008.34.
  • [28] S. Moon and K. Yi, “Human driving data-based design of a vehicle adaptive cruise control algorithm,” Veh. Syst. Dyn., vol. 46, no. 8, pp. 661–690, 2008, doi: 10.1080/00423110701576130.
  • [29] C. Yuan et al., “Research on active collision avoidance algorithm for intelligent vehicle based on improved artificial potential field model,” Int. J. Adv. Robot. Syst., vol. 17, no. 3, p. 1729881420911232, 2020, doi: 10.1177/1729881420911232.
  • [30] M. Hassanzadeh, M. Lidberg, M. Keshavarz, and L. Bjelkeflo, “Path and speed control of a heavy vehicle for collision avoidance manoeuvres,” in Intelligent Vehicles Symposium, 2012, pp. 129–134, doi: 10.1109/IVS.2012.6232254.
  • [31] M.P. Vecchi, S. Kirkpatrick, “Global wiring by simulated annealing,” IEEE Trans. Comput-Aided Des. Integr. Circuits Syst., vol. 2, no. 4, pp. 215–222, 1983, doi: 10.1109/TCAD.1983.1270039.
  • [32] J. Ding, R. Dang, J. Wang, and K. Li, “Driver intention recognition method based on comprehensive lane-change environment assessment,” in Intelligent Vehicles Symposium Proceedings, 2014, pp. 214–220, doi: 10.1109/IVS.2014.6856483.
  • [33] T. Kondoh et al., “Identification of visual cues and quantification of drivers’ perception of proximity risk to the lead vehicle in car-following situations,” J. Mech. Syst. Transp. Logist., vol. 1, no. 2, pp. 170–180, 2008, doi: 10.1299/jmtl.1.170.
  • [34] F. Pan et al., “Lane-changing risk analysis in undersea tunnels based on fuzzy inference,” IEEE Access, vol. 8, pp. 19512–19520, 2020, doi: 10.1109/ACCESS.2020.2968584.
  • [35] A. Kondyli and L. Elefteriadou, “Driver behavior at freeway-ramp merging areas based on instrumented vehicle observations,” Transp. Lett., vol. 4, no. 3, pp. 129–142, 2012, doi: 10.3328/TL.2012.04.03.129-141.
  • [36] Z. Huang et al., “Path planning and cooperative control for automated vehicle platoon using hybrid automata,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 3, pp. 959–974, 2018, doi: 10.1109/TITS.2018.2841967.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-99bb87e7-e28c-4766-bdec-b64b88acce76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.