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VERIFYING RTECTL PROPERTIESOF A TRAIN CONTROLLER SYSTEMSBo»ena Wo¹na-Szze±niak, Agnieszka Zbrzezny,Andrzej ZbrzeznyInstitute of Mathematis and Computer SieneJan Dªugosz University in Cz�stohowaal. Armii Krajowej 13/15, 42-200 Cz�stohowa, Polande-mail: {b.wozna, agnieszka.zbrzezny, a.zbrzezny}�ajd.zest.plAbstrat. In the paper we deal with a lassi onurreny problem � a faulty trainontroller system (FTC). In partiular, we formalise it by means of �nite automata,and onsider several properties of the problem, whih an be expressed as formulaeof a soft real-time branhing time temporal logi, alled RTECTL. Further, we verifythe RTECTL properties of FTC by means of SAT-based bounded model heking(BMC) method, and present the performane evaluation of the BMC method withrespet to the onsidered problem. The performane evaluation is given by means ofthe running time and the memory used.1. IntrodutionConurreny is a property of systems that allows to perform multiple ompu-tations in parallel and it is ubiquitous in omputer siene today, for example,it is the ore feature of today operating systems. Conurreny is widespreadbut error prone - typial error inludes rae onditions and mutual exlusionviolations; errors that are unknown in sequential omputations. Traditionalreliability measures suh as simulation and testing fail in the presene of on-urreny, due to the di�ulties of reproduing erroneous behaviour.Model heking [3℄ is an automated tehnique designed to establish ina formal and preise way that spei� properties are satis�ed by a given sys-tem. Its main idea onsists in representing a (�nite) state system as a Kripke



154 Bo»ena Wo¹na-Szze±niak, Agnieszka Zbrzezny, Andrzej Zbrzeznystruture M , expressing a spei�ation by a logial formula ϕ, and hekingautomatially whether the formula ϕ holds in the model M . Unfortunately,the pratial appliability of model heking is strongly restrited by the state-spae explosion problem, whih is mainly aused by representing onurrenyof operations by their interleaving. Therefore, there are many di�erent redu-tion tehniques aimed at minimising models. The major methods inlude ap-pliation of partial order redutions [10℄, symmetry redutions [6℄, abstrationtehniques [4℄, OBDD-based symboli storage methods [1℄, and SAT-basedbounded [2, 9℄ and unbounded [8℄ model heking.The RTCTL language [5℄ is a propositional branhing-time temporal logiwith bounded operators, whih was introdued to allow spei�ation and rea-soning about time-ritial orretness properties. It makes possible to diretlyexpress bounded properties like, for example, �property ϕ will our in lessthan 10 unit time�, or �property ϕ will always be asserted between 2 and 8unit time�. Note that properties like above an be expressed using nested ap-pliations of the next state operators, however the resulting CTL formula anbe very omplex and umbersome to work with. RTCTL, by allowing boundson all temporal operators to be spei�ed, provides a muh more ompat andonvenient way of expressing time-bounded properties.In the paper we investigate a �nite state systems modelled via a networkof �nite automata. In partiular, we deal with a faulty train ontroller system(adapted from [7℄) � a lassi onurreny problem. We model it as a networkof �nite automata, and verify using a SAT-based bounded model heking(BMC) method for RTCTL properties.The rest of the artile is strutured as follows. In the next setion weprovide the main formalisms used throughout the paper, i.e., �nite automata,the RTCTL language together with its universal and existential subsets, andSAT-based BMC for the existential part of RTCTL (RTECTL). In setion 3we show how our SAT-based BMC for RTECTL works by means of the faultytrain ontroller system. In setion 4 we onlude our paper.2. Preliminaries2.1. Finite automata and parallel ompositionGiven is a set PV of propositional variables, eah of whih represents funda-mental properties of the system in question. A �nite automaton, we onsiderin the paper, is a mathematial struture A = (Σ, S, s0, T, V ) that onsists ofa �nite set of ations (Σ), a �nite set of states (S), an initial state (s0), a tran-sition relation (T ⊆ S × S) de�ning rules for going from one state to anotherdepending upon the input ation, and a valuation funtion (V : S → 2PV )



Verifying RTECTL properties of a train ontroller system 155whih assigns to every state a set of propositional variables that are assumedto be true at this state.Typially onurrent systems are designed as olletions of interatingomputational proesses that may be exeuted in parallel. Therefore, we as-sume that a onurrent system is modelled as a network of automata that runin parallel and ommuniate with eah other via exeuting shared ations.There are several ways of de�ning a parallel omposition of a few automata.We adapt the standard de�nition, namely, in the parallel omposition thetransitions not orresponding to a shared ation are interleaved, whereas thetransitions labelled with a shared ation are synhronised.The following de�nition formalises the above disussion. Let Ai = (Σi, Si,

s0i , Ti, Vi) be an automaton, for i = 1, . . . ,m. We take Σ =
⋃m

i=1 Σi, andfor σ ∈ Σ we de�ne a set Σ(σ) = {1 ≤ i ≤ m | σ ∈ Σi} that gives theindies of the omponents that synhronise at σ. A parallel omposition of
m automata Ai is the automaton A = (Σ, S, s0, T, V ), where Σ =

⋃m
i=1 Σi,

S =
∏m

i=1 Si, s0 = (s01, . . . , s
0
m), V ((s1, . . . , sm)) =

⋃m
i=1 Vi(si), and a tran-sition ((s1, . . . , sm), σ, (s′1, . . . , s

′
m)) ∈ T i� (∀j ∈ Σ(σ)) (sj, σ, s

′
j) ∈ Tj and

(∀i ∈ {1, . . . ,m} \ Σ(σ)) s′i = si.2.2. The RTCTL languageLet p ∈ PV , and I be an interval in IN = {0, 1, . . . } of the form: [a, b) and
[a,∞), for a, b ∈ IN1. Hereafter by left(I) we denote the left end of theinterval I, i.e. left(I) = a, and by right(I) the right end of the interval I, i.e.
right([a, b)) = b− 1 and right([a,∞)) = ∞. The language RTCTL is de�nedby the following grammar:
ϕ:= true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | E(ϕUIϕ) | A(ϕUIϕ) |

EGIϕ | AGIϕ

UI and GI are the operators for bounded �until� and �globally�, respetively.
E and A are the existential and universal path quanti�ers, respetively. The re-maining bounded temporal operators are de�ned in the standard way: O(αRIβ)
def
= O(βUI(α ∧ β)) ∨ OGIβ, OFIα

def
= O(trueUIα), where O ∈ {E,A}.RTACTL is the fragment of RTCTL suh that the formulae are restrited tothe positive Boolean ombinations of AXϕ, AGϕ and A(ϕUψ). Negationan be applied to propositions only.RTECTL is the fragment of RTCTL suh that the formulae are restrited tothe positive Boolean ombinations of EXϕ, EGϕ and E(ϕUψ). Negationan be applied to propositions only.1Note that the remaining forms of intervals an be de�ned by means of [a, b) and [a,∞).



156 Bo»ena Wo¹na-Szze±niak, Agnieszka Zbrzezny, Andrzej ZbrzeznyA model for RTCTL is the automaton A = (Σ, S, s0, T, V ) as de�ned in theprevious setion. Note that this �nite automaton an be viewed as a standardKripke struture or labelled transition system.Let A = (Σ, S, s0, T, V ) be a model. A path of A is an in�nite sequene
π = (s0, s1, . . . ) of states suh that (sj, sj+1) ∈ T for eah j ∈ IN. For a path
π = (s0, s1, . . . ), we take π(j) = sj. By Π(s) we denote the set of all thepaths starting at s ∈ S, O ∈ {E,A}, and # = ∃π ∈ Π(s) if O = E, otherwise
# = ∀π ∈ Π(s). Given the above, the formal semantis of RTCTL is de�nedreursively as follows:
• A, s |= true, • A, s 6|= false ,
• A, s |= p i� p ∈ V (s), • A, s |= ¬p i� p 6∈ V (s),
• A, s |= α ∧ β i� A, s |= α and A, s |= β,
• A, s |= α ∨ β i� A, s |= α or A, s |= β,
• A, s |= OXα i�#(A, π(1) |= α),
• A, s |= O(αUIβ) i� #(∃m ∈ I)[A, π(m) |= β and (∀j < m)A, π(j) |= α],
• A, s |= OGIα i� #(∀m ∈ I)[A, π(m) |= α].We end the setion by de�ning the notions of validity and the model hek-ing problem. Namely, a RTCTL formula ϕ is valid in A (denoted A |= ϕ)i� A, s0 |= ϕ, i.e., ϕ is true at the initial state of the model A. The modelheking problem asks whether A |= ϕ.2.3. SAT-based BMC for RTECTLIn this setion we give an overview of a SAT-based BMC method for theexistential fragment of RTCTL (RTECTL) [11℄. As usual, we start by de�ning
k-paths, and (k, l)-loops, and then in turn we de�ne a bounded semantis forRTECTL, whih is later used for translation to SAT.Given are a model A = (Σ, S, s0, T, V ) and a bound k ≥ 0. A k-path isthe pre�x of length k of a path in Π. By Pk we denote a set of all the k-paths.By Pk(s) we denote a set of all the k-paths πk with πk(0) = s. A (k, l)-loop isa k-path πk = (πk(0), . . . , πk(l), . . . , πk(k)) suh that πk(l) = πk(k), for some
0 ≤ l < k. A funtion loop : Πk → 2IN identi�es these k-paths that are loopsand it is de�ned as: loop(πk) = {l | 0 ≤ l < k and πk(l) = πk(k)}.De�nition 1 Given are a bound k ∈ IN, a model A, and RTECTL formulae
α, β. A, s |=k α denotes that α is k−true at the state s of A. The relation |=kis de�ned indutively as follows:
• A, s |=k true, • A, s 6|=k false,
• A, s |=k p i� p ∈ V (s), • A, s |=k ¬p i� p 6∈ V (s),
• A, s |=k α ∨ β i� A, s |=k α or A, s |=k β,
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• A, s |=k α ∧ β i� A, s |=k α and A, s |=k β,
• A, s |=k EXα i� k > 0 and (∃π ∈ Πk(s))A, π(1) |=k α,
• A, s |=k E(αUIβ) i� (∃π ∈ Πk(s))(∃0 ≤ m ≤ k)(m ∈ I and A, π(m) |=k βand (∀0 ≤ j < m)A, π(j) |=k α),

• A, s |=k EGIα i� (∃π ∈ Πk(s))((k ≥ right(I) and (∀j ∈ I) A, π(j) |=k α) or
(k < right(I) and (∃l ∈ loop(π))(∀min(left(I), l) ≤ j < k)A, π(j) |=k α)).A RTECTL formula ϕ is valid in model A with bound k (denoted A |=k ϕ)i�A, s0 |=k ϕ, i.e., ϕ is k−true at the initial state of the model A. The boundedmodel heking problem asks whether A |=k ϕ.The following theorem, whih an be proven by indution on the length ofa RTECTL formula, states that there exists a bound suh that bounded andunbounded semantis are equivalent. This implies that the model hekingproblem (A |= ϕ) an be redued to the bounded model heking problem(A |=k ϕ).Theorem 1 Let A be a model and ϕ a RTECTL formula. Then, the followingequivalene holds: A |= ϕ i� there exists k ≥ 0 suh that A |=k ϕ.We an also show even the stronger property, namely, we an prove that

ϕ is k−true in A if and only if ϕ is k−true in A with a number of k−pathsredued to fk(ϕ), where the funtion fk : RTECTL→ IN is de�ned as follows:
• fk(true) = fk(false) = fk(p) = fk(¬p) = 0, where p ∈ PV ,
• fk(α ∧ β) = fk(α) + fk(β),
• fk(α ∨ β) = max{fk(α), fk(β)},
• fk(Xα) = fk(α) + 1,
• fk(E(αUIβ)) = k · fk(α) + fk(β) + 1,
• fk(EGIα) = (k + 1) · fk(α) + 1.Given are a model A = (Σ, S, s0, T, V ), a bound k ≥ 0, and a RTECTLformula ϕ. The problem of heking whether A |=k ϕ holds an be translatedto the satis�ability problem of the following propositional formula:

[A, ϕ]k := [Aϕ,s0

]k ∧ [ϕ]A,k (1)where, the formula [Aϕ,s0

]k onstrains the fk(ϕ) symboli k-paths to be valid
k-paths of A, while the formula [ϕ]A,k enodes a number of onstraints thatmust be satis�ed on these sets of k-paths for ϕ to be satis�ed. One thistranslation is de�ned, heking satis�ability of a RTECTL formula an bedone by means of a SAT-solver.



158 Bo»ena Wo¹na-Szze±niak, Agnieszka Zbrzezny, Andrzej ZbrzeznyIn order to de�ne the formula [A, ϕ]k we proeed as follows. We assumethat eah state s of A is enoded by a bit-vetor whose length, say r, dependson the number of loal states of �omponent� automata. Thus, eah state sof A we an represent by a vetor w = (u1, . . . , ur) of propositional variables(usually alled state variables), to whih we refer to as symboli states. A �nitesequene (w0, . . . , wk) of symboli states is alled a symboli k-path. Sine, ingeneral, we may need to onsider more than one symboli k-path, we introduea notion of the j-th symboli k-path, whih is denoted by (w0,j , . . . , wk,j),where wi,j are symboli states for 0 ≤ j < fk(ϕ) and 0 ≤ i ≤ k. Note that theexat number of neessary symboli k-paths depends on the heked formula
ϕ, and it an be alulated by means of the funtion fk.The propositional formula [Aϕ,s0

]k is de�ned over symboli states wi,j, for
0 ≤ i ≤ k and 0 ≤ j < fk(ϕ), in the following way:

[Aϕ,s0

]k := Is0(w0,0) ∧

fk(ϕ)−1
∧

j=0

k−1
∧

i=0

R(wi,j , wi+1,j) (2)where Is0(w) is a formula that enodes the initial state s0 of A, and R(w,w′)is a formula that enodes the transition relation of A.The next step is the translation of a RTECTL formula ϕ into a proposi-tional formula [ϕ]A,k := [ϕ]
[0,0]
k , where k ≥ 0 is a bound, [ϕ]

[m,n]
k denotes thetranslation of ϕ at the symboli state wm,n, and it is de�ned indutively asfollows:

• [true]
[m,n]
k := true, • [false]

[m,n]
k := false,

• [p]
[m,n]
k := p(wm,n), • [¬p]

[m,n]
k := ¬p(wm,n),

• [α ∧ β]
[m,n]
k := [α]

[m,n]
k ∧ [β]

[m,n]
k , • [α ∨ β]

[m,n]
k := [α]

[m,n]
k ∨ [β]

[m,n]
k ,

• [EXα]
[m,n]
k := (1)

fk(ϕ)−1
∨

ll=0

H(wm,n, w0,ll)) ∧ [α]
[1,ll]
k , if k > 0

(2) false, otherwise

• [E(αUIβ)]
[m,n]
k :=fk(ϕ)−1

∨

ll=0

(H(wm,n, w0,ll) ∧
k

∨

i=0

([β]
[i,ll]
k ∧ In(i, I) ∧

i−1
∧

j=0

[α]
[j,ll]
k )),

• [EGIα]
[m,n]
k := fk(ϕ)−1

∨

ll=0

H(wm,n, w0,ll) ∧

(1)

right(I)
∧

j=left(I)

[α]
[j,ll]
k , if right(I) ≤ k

(2)
k−1
∨

l=0

(H(wk,ll, wl,ll) ∧
k−1
∧

j=min(left(I),l)

[α]
[j,ll]
k ), otherwise.



Verifying RTECTL properties of a train ontroller system 159The following theorem, whih an be proven by indution on the lengthof a RTECTL formula, expresses the orretness and the ompleteness of thetranslation presented above.Theorem 2 Let A be a model, and ϕ a RTECTL formula. Then for every
k ∈ IN, A |=k ϕ if, and only if, the propositional formula [A, ϕ]k is satis�able.3. A faulty train ontroller systemTo evaluate the BMC tehnique for RTECTL, we analyse a salable onurrentsystem, whih is a faulty train ontroller system (FTC) (adapted from [7℄).The system onsists of a ontroller, and n trains (for n ≥ 2), and it is assumedthat eah train uses its own irular trak for travelling in one diretion. Atone point, all trains have to pass through a tunnel, but beause there is onlyone trak in the tunnel, trains arriving from eah diretion annot use itsimultaneously. There are olour light signals on both sides of the tunnel,whih an be either red or green. All trains notify the ontroller when theyrequest entry to the tunnel or when they leave the tunnel. The ontrollerontrols the olour of the olour light signals, however it an be faulty, andthereby it does not serve its purpose. Namely, the ontroller does not ensurethe mutual exlusion property: two trains never oupy the tunnel at the sametime.
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Figure 1: A network of automata for train ontroller systemAn automata model of the FTC system is shown on Figure 1. The spei-�ations for it are given in the universal form, i.e., they are expressed in theRTACTL language:
ϕ1 = AG[0,∞]

(

InTunnel1 → AF[1,∞](InTunnel1)
),

ϕ2 = AG[0,∞]

(
∧n−1

i=1

∧n
j=i+1 ¬(InTunneli ∧ InTunnelj)

),
ϕ3 = AG[0,∞]

(

InTunnel1 → AF[1,n+1]

(
∨n

i=1 InTunneli
)).



160 Bo»ena Wo¹na-Szze±niak, Agnieszka Zbrzezny, Andrzej ZbrzeznyThe formula ϕ1 states that it is always the ase that whenever Train 1 is inthe tunnel, it will be in the tunnel one again within a bounded period oftime, i.e., within n time units for n ≥ 1. The formula ϕ2 represents the fatthat trains have exlusive aess to the tunnel. The formula ϕ3 expresses thatit is always the ase that if Train 1 is in the tunnel, then either he or othertrain will be in the tunnel during the next n+ 1 time units.All the above formulae are not true in the model for FTC, and for everyspei�ation given, there exists a ounterexample. This was shown by meansof the BMC method for RTECTL and testing the formulae ψi = ¬ϕi (for
i = 1, 2, 3), whih are the negations of the assumed universal spei�ationsand are interpreted existentially.For the tests we have used a omputer equipped with AMD phenom(tm)9550 Quad-Core 2200 MHz proessor and 4 GB of RAM, running UbuntuLinux with kernel version 2.6.35-28-generi-pae, and we have set the timeout to3600 seonds, and memory limit to 3072 MB. We have used the state of the artSAT-solver MiniSat 2. The experimental results are shown in Table 1. Inpartiular, we present there the results for the formulae ϕ1, ϕ2, and ϕ3, andthe maximum number of trains we were able to model hek by means of ourBMC method for RTECTL.To get the experimental results in Table 1, we started with a propositionalenoding of a network of automata that models FTC. To this end we haveenoded the states of the network, in partiular the initial state, and the tran-sition relation. An example of suh enoding for two trains and a ontroller,we present below.Let SV = {p1, p2, . . . } be an in�nite set of state variables. A Booleanenoding of all the loal states of the two automata representing trains is thefollowing:

Train 1 Train 2

state bit2 bit1 formula state bit4 bit3 formula

away1 0 0 ¬p1 ∧ ¬p2 away2 0 0 ¬p3 ∧ ¬p4

wait1 1 0 ¬p1 ∧ p2 wait2 1 0 ¬p3 ∧ p4

tunnel1 0 1 p1 ∧ ¬p2 tunnel2 0 1 p3 ∧ ¬p4

Controller

location bit6 bit5 formula

green 0 0 ¬p5 ∧ ¬p6

red 0 1 p5 ∧ ¬p6

faulty 1 0 ¬p5 ∧ p6Given the above, it is easy to see that eah state of the network of automatamodelling the FTC system an be represented by a valuation of a symboli



Verifying RTECTL properties of a train ontroller system 161state w = (p1, . . . , p6). Then, a propositional formula Is0(w), whih enodesthe initial global state of the onsidered system, is the onjuntion of threeformulae that enode all the loal initial states, i.e.
Is0(w) = (¬p1 ∧ ¬p2) ∧ (¬p3 ∧ ¬p4) ∧ (¬p5 ∧ ¬p6)Furthermore, let w = (p1, . . . , p6), w

′ = (p′1, . . . , p
′
6) be two di�erent symbolistates. A propositional formula R(w,w′), whih enodes all the transitionsof the onsidered system is de�ned as the disjuntion of formula that enodesingle transitions:

R(w,w′) approach1 ∨ in1 ∨ out1 ∨ approach2 ∨ in2 ∨ out2

approach1 ¬p1 ∧ ¬p2 ∧ ¬p′1 ∧ p
′
2 ∧ (p3 ↔ p′3) ∧ (p4 ↔ p′4) ∧ (p5 ↔ p′5)

∧(p6 ↔ p′6)

in1 ¬p1 ∧ p2 ∧ p
′
1 ∧ ¬p′2 ∧ (p3 ↔ p′3) ∧ (p4 ↔ p′4) ∧ (¬p5 ∧ ¬p6∧

p′5 ∧ ¬p′6 ∨ ¬p5 ∧ ¬p6 ∧ ¬p′5 ∧ p
′
6 ∨ ¬p5 ∧ p6 ∧ ¬p′5 ∧ p

′
6)

out1 p1 ∧ ¬p2 ∧ ¬p′1 ∧ ¬p′2 ∧ (p3 ↔ p′3) ∧ (p4 ↔ p′4)∧

(p5 ∧ ¬p6 ∧ ¬p′5 ∧ ¬p′6 ∨ ¬p5 ∧ p6 ∧ ¬p′5 ∧ ¬p′6)

approach2 ¬p3 ∧ ¬p4 ∧ ¬p′3 ∧ p
′
4 ∧ (p1 ↔ p′1) ∧ (p2 ↔ p′2) ∧ (p5 ↔ p′5)

∧(p6 ↔ p′6)

in2 ¬p3 ∧ p4 ∧ p
′
3 ∧ ¬p′4 ∧ (p1 ↔ p′1) ∧ (p2 ↔ p′2) ∧ (¬p5 ∧ ¬p6∧

p′5 ∧ ¬p′6 ∨ ¬p5 ∧ ¬p6 ∧ ¬p′5 ∧ p
′
6 ∨ ¬p5 ∧ p6 ∧ ¬p′5 ∧ p

′
6)

out2 p3 ∧ ¬p4 ∧ ¬p′3 ∧ ¬p′4 ∧ (p1 ↔ p′1) ∧ (p2 ↔ p′2)∧

(p5 ∧ ¬p6 ∧ ¬p′5 ∧ ¬p′6 ∨ ¬p5 ∧ p6 ∧ ¬p′5 ∧ ¬p′6)number of BMC MiniSat 2
ϕ k fk(ϕ) trains variables lauses se MB se MB
ϕ1 4 2 1000 4251246 12747733 217.9 553.5 2081.0 902.0
ϕ2 16 1 8 4349 12418 0.1 2.0 1882.3 32.0
ϕ3 4 2 240 292798 876949 7.7 39.6 1851.0 676.0Table 1: Experimental results4. ConlusionsIn this paper we gave a SAT-based symboli approah to bounded modelheking of onurrent systems modelled by network of �nite automata. Wefoused on the properties expressed in RTECTL. The method has been im-plemented, and tested on the standard benhmark � a faulty train ontrollersystem. The benhmark has been arefully seleted in suh a way as to revealthe advantages and disadvantages of both approahes.
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