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t. In the paper we deal with a 
lassi
 
on
urren
y problem � a faulty train
ontroller system (FTC). In parti
ular, we formalise it by means of �nite automata,and 
onsider several properties of the problem, whi
h 
an be expressed as formulaeof a soft real-time bran
hing time temporal logi
, 
alled RTECTL. Further, we verifythe RTECTL properties of FTC by means of SAT-based bounded model 
he
king(BMC) method, and present the performan
e evaluation of the BMC method withrespe
t to the 
onsidered problem. The performan
e evaluation is given by means ofthe running time and the memory used.1. Introdu
tionCon
urren
y is a property of systems that allows to perform multiple 
ompu-tations in parallel and it is ubiquitous in 
omputer s
ien
e today, for example,it is the 
ore feature of today operating systems. Con
urren
y is widespreadbut error prone - typi
al error in
ludes ra
e 
onditions and mutual ex
lusionviolations; errors that are unknown in sequential 
omputations. Traditionalreliability measures su
h as simulation and testing fail in the presen
e of 
on-
urren
y, due to the di�
ulties of reprodu
ing erroneous behaviour.Model 
he
king [3℄ is an automated te
hnique designed to establish ina formal and pre
ise way that spe
i�
 properties are satis�ed by a given sys-tem. Its main idea 
onsists in representing a (�nite) state system as a Kripke
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ture M , expressing a spe
i�
ation by a logi
al formula ϕ, and 
he
kingautomati
ally whether the formula ϕ holds in the model M . Unfortunately,the pra
ti
al appli
ability of model 
he
king is strongly restri
ted by the state-spa
e explosion problem, whi
h is mainly 
aused by representing 
on
urren
yof operations by their interleaving. Therefore, there are many di�erent redu
-tion te
hniques aimed at minimising models. The major methods in
lude ap-pli
ation of partial order redu
tions [10℄, symmetry redu
tions [6℄, abstra
tionte
hniques [4℄, OBDD-based symboli
 storage methods [1℄, and SAT-basedbounded [2, 9℄ and unbounded [8℄ model 
he
king.The RTCTL language [5℄ is a propositional bran
hing-time temporal logi
with bounded operators, whi
h was introdu
ed to allow spe
i�
ation and rea-soning about time-
riti
al 
orre
tness properties. It makes possible to dire
tlyexpress bounded properties like, for example, �property ϕ will o

ur in lessthan 10 unit time�, or �property ϕ will always be asserted between 2 and 8unit time�. Note that properties like above 
an be expressed using nested ap-pli
ations of the next state operators, however the resulting CTL formula 
anbe very 
omplex and 
umbersome to work with. RTCTL, by allowing boundson all temporal operators to be spe
i�ed, provides a mu
h more 
ompa
t and
onvenient way of expressing time-bounded properties.In the paper we investigate a �nite state systems modelled via a networkof �nite automata. In parti
ular, we deal with a faulty train 
ontroller system(adapted from [7℄) � a 
lassi
 
on
urren
y problem. We model it as a networkof �nite automata, and verify using a SAT-based bounded model 
he
king(BMC) method for RTCTL properties.The rest of the arti
le is stru
tured as follows. In the next se
tion weprovide the main formalisms used throughout the paper, i.e., �nite automata,the RTCTL language together with its universal and existential subsets, andSAT-based BMC for the existential part of RTCTL (RTECTL). In se
tion 3we show how our SAT-based BMC for RTECTL works by means of the faultytrain 
ontroller system. In se
tion 4 we 
on
lude our paper.2. Preliminaries2.1. Finite automata and parallel 
ompositionGiven is a set PV of propositional variables, ea
h of whi
h represents funda-mental properties of the system in question. A �nite automaton, we 
onsiderin the paper, is a mathemati
al stru
ture A = (Σ, S, s0, T, V ) that 
onsists ofa �nite set of a
tions (Σ), a �nite set of states (S), an initial state (s0), a tran-sition relation (T ⊆ S × S) de�ning rules for going from one state to anotherdepending upon the input a
tion, and a valuation fun
tion (V : S → 2PV )



Verifying RTECTL properties of a train 
ontroller system 155whi
h assigns to every state a set of propositional variables that are assumedto be true at this state.Typi
ally 
on
urrent systems are designed as 
olle
tions of intera
ting
omputational pro
esses that may be exe
uted in parallel. Therefore, we as-sume that a 
on
urrent system is modelled as a network of automata that runin parallel and 
ommuni
ate with ea
h other via exe
uting shared a
tions.There are several ways of de�ning a parallel 
omposition of a few automata.We adapt the standard de�nition, namely, in the parallel 
omposition thetransitions not 
orresponding to a shared a
tion are interleaved, whereas thetransitions labelled with a shared a
tion are syn
hronised.The following de�nition formalises the above dis
ussion. Let Ai = (Σi, Si,

s0i , Ti, Vi) be an automaton, for i = 1, . . . ,m. We take Σ =
⋃m

i=1 Σi, andfor σ ∈ Σ we de�ne a set Σ(σ) = {1 ≤ i ≤ m | σ ∈ Σi} that gives theindi
es of the 
omponents that syn
hronise at σ. A parallel 
omposition of
m automata Ai is the automaton A = (Σ, S, s0, T, V ), where Σ =

⋃m
i=1 Σi,

S =
∏m

i=1 Si, s0 = (s01, . . . , s
0
m), V ((s1, . . . , sm)) =

⋃m
i=1 Vi(si), and a tran-sition ((s1, . . . , sm), σ, (s′1, . . . , s

′
m)) ∈ T i� (∀j ∈ Σ(σ)) (sj, σ, s

′
j) ∈ Tj and

(∀i ∈ {1, . . . ,m} \ Σ(σ)) s′i = si.2.2. The RTCTL languageLet p ∈ PV , and I be an interval in IN = {0, 1, . . . } of the form: [a, b) and
[a,∞), for a, b ∈ IN1. Hereafter by left(I) we denote the left end of theinterval I, i.e. left(I) = a, and by right(I) the right end of the interval I, i.e.
right([a, b)) = b− 1 and right([a,∞)) = ∞. The language RTCTL is de�nedby the following grammar:
ϕ:= true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | EXϕ | AXϕ | E(ϕUIϕ) | A(ϕUIϕ) |

EGIϕ | AGIϕ

UI and GI are the operators for bounded �until� and �globally�, respe
tively.
E and A are the existential and universal path quanti�ers, respe
tively. The re-maining bounded temporal operators are de�ned in the standard way: O(αRIβ)
def
= O(βUI(α ∧ β)) ∨ OGIβ, OFIα

def
= O(trueUIα), where O ∈ {E,A}.RTACTL is the fragment of RTCTL su
h that the formulae are restri
ted tothe positive Boolean 
ombinations of AXϕ, AGϕ and A(ϕUψ). Negation
an be applied to propositions only.RTECTL is the fragment of RTCTL su
h that the formulae are restri
ted tothe positive Boolean 
ombinations of EXϕ, EGϕ and E(ϕUψ). Negation
an be applied to propositions only.1Note that the remaining forms of intervals 
an be de�ned by means of [a, b) and [a,∞).
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ze±niak, Agnieszka Zbrzezny, Andrzej ZbrzeznyA model for RTCTL is the automaton A = (Σ, S, s0, T, V ) as de�ned in theprevious se
tion. Note that this �nite automaton 
an be viewed as a standardKripke stru
ture or labelled transition system.Let A = (Σ, S, s0, T, V ) be a model. A path of A is an in�nite sequen
e
π = (s0, s1, . . . ) of states su
h that (sj, sj+1) ∈ T for ea
h j ∈ IN. For a path
π = (s0, s1, . . . ), we take π(j) = sj. By Π(s) we denote the set of all thepaths starting at s ∈ S, O ∈ {E,A}, and # = ∃π ∈ Π(s) if O = E, otherwise
# = ∀π ∈ Π(s). Given the above, the formal semanti
s of RTCTL is de�nedre
ursively as follows:
• A, s |= true, • A, s 6|= false ,
• A, s |= p i� p ∈ V (s), • A, s |= ¬p i� p 6∈ V (s),
• A, s |= α ∧ β i� A, s |= α and A, s |= β,
• A, s |= α ∨ β i� A, s |= α or A, s |= β,
• A, s |= OXα i�#(A, π(1) |= α),
• A, s |= O(αUIβ) i� #(∃m ∈ I)[A, π(m) |= β and (∀j < m)A, π(j) |= α],
• A, s |= OGIα i� #(∀m ∈ I)[A, π(m) |= α].We end the se
tion by de�ning the notions of validity and the model 
he
k-ing problem. Namely, a RTCTL formula ϕ is valid in A (denoted A |= ϕ)i� A, s0 |= ϕ, i.e., ϕ is true at the initial state of the model A. The model
he
king problem asks whether A |= ϕ.2.3. SAT-based BMC for RTECTLIn this se
tion we give an overview of a SAT-based BMC method for theexistential fragment of RTCTL (RTECTL) [11℄. As usual, we start by de�ning
k-paths, and (k, l)-loops, and then in turn we de�ne a bounded semanti
s forRTECTL, whi
h is later used for translation to SAT.Given are a model A = (Σ, S, s0, T, V ) and a bound k ≥ 0. A k-path isthe pre�x of length k of a path in Π. By Pk we denote a set of all the k-paths.By Pk(s) we denote a set of all the k-paths πk with πk(0) = s. A (k, l)-loop isa k-path πk = (πk(0), . . . , πk(l), . . . , πk(k)) su
h that πk(l) = πk(k), for some
0 ≤ l < k. A fun
tion loop : Πk → 2IN identi�es these k-paths that are loopsand it is de�ned as: loop(πk) = {l | 0 ≤ l < k and πk(l) = πk(k)}.De�nition 1 Given are a bound k ∈ IN, a model A, and RTECTL formulae
α, β. A, s |=k α denotes that α is k−true at the state s of A. The relation |=kis de�ned indu
tively as follows:
• A, s |=k true, • A, s 6|=k false,
• A, s |=k p i� p ∈ V (s), • A, s |=k ¬p i� p 6∈ V (s),
• A, s |=k α ∨ β i� A, s |=k α or A, s |=k β,
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• A, s |=k α ∧ β i� A, s |=k α and A, s |=k β,
• A, s |=k EXα i� k > 0 and (∃π ∈ Πk(s))A, π(1) |=k α,
• A, s |=k E(αUIβ) i� (∃π ∈ Πk(s))(∃0 ≤ m ≤ k)(m ∈ I and A, π(m) |=k βand (∀0 ≤ j < m)A, π(j) |=k α),

• A, s |=k EGIα i� (∃π ∈ Πk(s))((k ≥ right(I) and (∀j ∈ I) A, π(j) |=k α) or
(k < right(I) and (∃l ∈ loop(π))(∀min(left(I), l) ≤ j < k)A, π(j) |=k α)).A RTECTL formula ϕ is valid in model A with bound k (denoted A |=k ϕ)i�A, s0 |=k ϕ, i.e., ϕ is k−true at the initial state of the model A. The boundedmodel 
he
king problem asks whether A |=k ϕ.The following theorem, whi
h 
an be proven by indu
tion on the length ofa RTECTL formula, states that there exists a bound su
h that bounded andunbounded semanti
s are equivalent. This implies that the model 
he
kingproblem (A |= ϕ) 
an be redu
ed to the bounded model 
he
king problem(A |=k ϕ).Theorem 1 Let A be a model and ϕ a RTECTL formula. Then, the followingequivalen
e holds: A |= ϕ i� there exists k ≥ 0 su
h that A |=k ϕ.We 
an also show even the stronger property, namely, we 
an prove that

ϕ is k−true in A if and only if ϕ is k−true in A with a number of k−pathsredu
ed to fk(ϕ), where the fun
tion fk : RTECTL→ IN is de�ned as follows:
• fk(true) = fk(false) = fk(p) = fk(¬p) = 0, where p ∈ PV ,
• fk(α ∧ β) = fk(α) + fk(β),
• fk(α ∨ β) = max{fk(α), fk(β)},
• fk(Xα) = fk(α) + 1,
• fk(E(αUIβ)) = k · fk(α) + fk(β) + 1,
• fk(EGIα) = (k + 1) · fk(α) + 1.Given are a model A = (Σ, S, s0, T, V ), a bound k ≥ 0, and a RTECTLformula ϕ. The problem of 
he
king whether A |=k ϕ holds 
an be translatedto the satis�ability problem of the following propositional formula:

[A, ϕ]k := [Aϕ,s0

]k ∧ [ϕ]A,k (1)where, the formula [Aϕ,s0

]k 
onstrains the fk(ϕ) symboli
 k-paths to be valid
k-paths of A, while the formula [ϕ]A,k en
odes a number of 
onstraints thatmust be satis�ed on these sets of k-paths for ϕ to be satis�ed. On
e thistranslation is de�ned, 
he
king satis�ability of a RTECTL formula 
an bedone by means of a SAT-solver.
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eed as follows. We assumethat ea
h state s of A is en
oded by a bit-ve
tor whose length, say r, dependson the number of lo
al states of �
omponent� automata. Thus, ea
h state sof A we 
an represent by a ve
tor w = (u1, . . . , ur) of propositional variables(usually 
alled state variables), to whi
h we refer to as symboli
 states. A �nitesequen
e (w0, . . . , wk) of symboli
 states is 
alled a symboli
 k-path. Sin
e, ingeneral, we may need to 
onsider more than one symboli
 k-path, we introdu
ea notion of the j-th symboli
 k-path, whi
h is denoted by (w0,j , . . . , wk,j),where wi,j are symboli
 states for 0 ≤ j < fk(ϕ) and 0 ≤ i ≤ k. Note that theexa
t number of ne
essary symboli
 k-paths depends on the 
he
ked formula
ϕ, and it 
an be 
al
ulated by means of the fun
tion fk.The propositional formula [Aϕ,s0

]k is de�ned over symboli
 states wi,j, for
0 ≤ i ≤ k and 0 ≤ j < fk(ϕ), in the following way:

[Aϕ,s0

]k := Is0(w0,0) ∧

fk(ϕ)−1
∧

j=0

k−1
∧

i=0

R(wi,j , wi+1,j) (2)where Is0(w) is a formula that en
odes the initial state s0 of A, and R(w,w′)is a formula that en
odes the transition relation of A.The next step is the translation of a RTECTL formula ϕ into a proposi-tional formula [ϕ]A,k := [ϕ]
[0,0]
k , where k ≥ 0 is a bound, [ϕ]

[m,n]
k denotes thetranslation of ϕ at the symboli
 state wm,n, and it is de�ned indu
tively asfollows:

• [true]
[m,n]
k := true, • [false]

[m,n]
k := false,

• [p]
[m,n]
k := p(wm,n), • [¬p]

[m,n]
k := ¬p(wm,n),

• [α ∧ β]
[m,n]
k := [α]

[m,n]
k ∧ [β]

[m,n]
k , • [α ∨ β]

[m,n]
k := [α]

[m,n]
k ∨ [β]

[m,n]
k ,

• [EXα]
[m,n]
k := (1)

fk(ϕ)−1
∨

ll=0

H(wm,n, w0,ll)) ∧ [α]
[1,ll]
k , if k > 0

(2) false, otherwise

• [E(αUIβ)]
[m,n]
k :=fk(ϕ)−1

∨

ll=0

(H(wm,n, w0,ll) ∧
k

∨

i=0

([β]
[i,ll]
k ∧ In(i, I) ∧

i−1
∧

j=0

[α]
[j,ll]
k )),

• [EGIα]
[m,n]
k := fk(ϕ)−1

∨

ll=0

H(wm,n, w0,ll) ∧

(1)

right(I)
∧

j=left(I)

[α]
[j,ll]
k , if right(I) ≤ k

(2)
k−1
∨

l=0

(H(wk,ll, wl,ll) ∧
k−1
∧

j=min(left(I),l)

[α]
[j,ll]
k ), otherwise.
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h 
an be proven by indu
tion on the lengthof a RTECTL formula, expresses the 
orre
tness and the 
ompleteness of thetranslation presented above.Theorem 2 Let A be a model, and ϕ a RTECTL formula. Then for every
k ∈ IN, A |=k ϕ if, and only if, the propositional formula [A, ϕ]k is satis�able.3. A faulty train 
ontroller systemTo evaluate the BMC te
hnique for RTECTL, we analyse a s
alable 
on
urrentsystem, whi
h is a faulty train 
ontroller system (FTC) (adapted from [7℄).The system 
onsists of a 
ontroller, and n trains (for n ≥ 2), and it is assumedthat ea
h train uses its own 
ir
ular tra
k for travelling in one dire
tion. Atone point, all trains have to pass through a tunnel, but be
ause there is onlyone tra
k in the tunnel, trains arriving from ea
h dire
tion 
annot use itsimultaneously. There are 
olour light signals on both sides of the tunnel,whi
h 
an be either red or green. All trains notify the 
ontroller when theyrequest entry to the tunnel or when they leave the tunnel. The 
ontroller
ontrols the 
olour of the 
olour light signals, however it 
an be faulty, andthereby it does not serve its purpose. Namely, the 
ontroller does not ensurethe mutual ex
lusion property: two trains never o

upy the tunnel at the sametime.
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in1

in1 inn
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Figure 1: A network of automata for train 
ontroller systemAn automata model of the FTC system is shown on Figure 1. The spe
i-�
ations for it are given in the universal form, i.e., they are expressed in theRTACTL language:
ϕ1 = AG[0,∞]

(

InTunnel1 → AF[1,∞](InTunnel1)
),

ϕ2 = AG[0,∞]

(
∧n−1

i=1

∧n
j=i+1 ¬(InTunneli ∧ InTunnelj)

),
ϕ3 = AG[0,∞]

(

InTunnel1 → AF[1,n+1]

(
∨n

i=1 InTunneli
)).



160 Bo»ena Wo¹na-Sz
ze±niak, Agnieszka Zbrzezny, Andrzej ZbrzeznyThe formula ϕ1 states that it is always the 
ase that whenever Train 1 is inthe tunnel, it will be in the tunnel on
e again within a bounded period oftime, i.e., within n time units for n ≥ 1. The formula ϕ2 represents the fa
tthat trains have ex
lusive a

ess to the tunnel. The formula ϕ3 expresses thatit is always the 
ase that if Train 1 is in the tunnel, then either he or othertrain will be in the tunnel during the next n+ 1 time units.All the above formulae are not true in the model for FTC, and for everyspe
i�
ation given, there exists a 
ounterexample. This was shown by meansof the BMC method for RTECTL and testing the formulae ψi = ¬ϕi (for
i = 1, 2, 3), whi
h are the negations of the assumed universal spe
i�
ationsand are interpreted existentially.For the tests we have used a 
omputer equipped with AMD phenom(tm)9550 Quad-Core 2200 MHz pro
essor and 4 GB of RAM, running UbuntuLinux with kernel version 2.6.35-28-generi
-pae, and we have set the timeout to3600 se
onds, and memory limit to 3072 MB. We have used the state of the artSAT-solver MiniSat 2. The experimental results are shown in Table 1. Inparti
ular, we present there the results for the formulae ϕ1, ϕ2, and ϕ3, andthe maximum number of trains we were able to model 
he
k by means of ourBMC method for RTECTL.To get the experimental results in Table 1, we started with a propositionalen
oding of a network of automata that models FTC. To this end we haveen
oded the states of the network, in parti
ular the initial state, and the tran-sition relation. An example of su
h en
oding for two trains and a 
ontroller,we present below.Let SV = {p1, p2, . . . } be an in�nite set of state variables. A Booleanen
oding of all the lo
al states of the two automata representing trains is thefollowing:

Train 1 Train 2

state bit2 bit1 formula state bit4 bit3 formula

away1 0 0 ¬p1 ∧ ¬p2 away2 0 0 ¬p3 ∧ ¬p4

wait1 1 0 ¬p1 ∧ p2 wait2 1 0 ¬p3 ∧ p4

tunnel1 0 1 p1 ∧ ¬p2 tunnel2 0 1 p3 ∧ ¬p4

Controller

location bit6 bit5 formula

green 0 0 ¬p5 ∧ ¬p6

red 0 1 p5 ∧ ¬p6

faulty 1 0 ¬p5 ∧ p6Given the above, it is easy to see that ea
h state of the network of automatamodelling the FTC system 
an be represented by a valuation of a symboli
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ontroller system 161state w = (p1, . . . , p6). Then, a propositional formula Is0(w), whi
h en
odesthe initial global state of the 
onsidered system, is the 
onjun
tion of threeformulae that en
ode all the lo
al initial states, i.e.
Is0(w) = (¬p1 ∧ ¬p2) ∧ (¬p3 ∧ ¬p4) ∧ (¬p5 ∧ ¬p6)Furthermore, let w = (p1, . . . , p6), w

′ = (p′1, . . . , p
′
6) be two di�erent symboli
states. A propositional formula R(w,w′), whi
h en
odes all the transitionsof the 
onsidered system is de�ned as the disjun
tion of formula that en
odesingle transitions:

R(w,w′) approach1 ∨ in1 ∨ out1 ∨ approach2 ∨ in2 ∨ out2

approach1 ¬p1 ∧ ¬p2 ∧ ¬p′1 ∧ p
′
2 ∧ (p3 ↔ p′3) ∧ (p4 ↔ p′4) ∧ (p5 ↔ p′5)

∧(p6 ↔ p′6)

in1 ¬p1 ∧ p2 ∧ p
′
1 ∧ ¬p′2 ∧ (p3 ↔ p′3) ∧ (p4 ↔ p′4) ∧ (¬p5 ∧ ¬p6∧

p′5 ∧ ¬p′6 ∨ ¬p5 ∧ ¬p6 ∧ ¬p′5 ∧ p
′
6 ∨ ¬p5 ∧ p6 ∧ ¬p′5 ∧ p

′
6)

out1 p1 ∧ ¬p2 ∧ ¬p′1 ∧ ¬p′2 ∧ (p3 ↔ p′3) ∧ (p4 ↔ p′4)∧

(p5 ∧ ¬p6 ∧ ¬p′5 ∧ ¬p′6 ∨ ¬p5 ∧ p6 ∧ ¬p′5 ∧ ¬p′6)

approach2 ¬p3 ∧ ¬p4 ∧ ¬p′3 ∧ p
′
4 ∧ (p1 ↔ p′1) ∧ (p2 ↔ p′2) ∧ (p5 ↔ p′5)

∧(p6 ↔ p′6)

in2 ¬p3 ∧ p4 ∧ p
′
3 ∧ ¬p′4 ∧ (p1 ↔ p′1) ∧ (p2 ↔ p′2) ∧ (¬p5 ∧ ¬p6∧

p′5 ∧ ¬p′6 ∨ ¬p5 ∧ ¬p6 ∧ ¬p′5 ∧ p
′
6 ∨ ¬p5 ∧ p6 ∧ ¬p′5 ∧ p

′
6)

out2 p3 ∧ ¬p4 ∧ ¬p′3 ∧ ¬p′4 ∧ (p1 ↔ p′1) ∧ (p2 ↔ p′2)∧

(p5 ∧ ¬p6 ∧ ¬p′5 ∧ ¬p′6 ∨ ¬p5 ∧ p6 ∧ ¬p′5 ∧ ¬p′6)number of BMC MiniSat 2
ϕ k fk(ϕ) trains variables 
lauses se
 MB se
 MB
ϕ1 4 2 1000 4251246 12747733 217.9 553.5 2081.0 902.0
ϕ2 16 1 8 4349 12418 0.1 2.0 1882.3 32.0
ϕ3 4 2 240 292798 876949 7.7 39.6 1851.0 676.0Table 1: Experimental results4. Con
lusionsIn this paper we gave a SAT-based symboli
 approa
h to bounded model
he
king of 
on
urrent systems modelled by network of �nite automata. Wefo
used on the properties expressed in RTECTL. The method has been im-plemented, and tested on the standard ben
hmark � a faulty train 
ontrollersystem. The ben
hmark has been 
arefully sele
ted in su
h a way as to revealthe advantages and disadvantages of both approa
hes.
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